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Abstract—This paper reviews the design techniques of the 

electrical neural recording system for energy-efficient 

operation. To operate neuroprosthetics by decoding action 

potentials (or neural spikes) and local field potentials in vivo, 

the electrical neural recording system can be used. For 

extending the system battery lifetime in vivo and avoiding tissue 

damage due to the heat, the neural recording system needs to 

be energy-efficiently driven while consuming low power and 

achieving low noise performance. In this paper, three energy-

efficient design techniques are reviewed with basic properties 

of the electrical neural recording system: 1) energy-efficient 

input structure of the operational transconductance amplifier, 

2) neural recording front-end channel using the low supply

voltage, and 3) neuronal activity-dependent recording system.
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I. INTRODUCTION

Neural activity monitoring is an essential part to drive 

neuroprosthetics for tetraplegia people and understand 

neuroscience [1]. Action potentials (APs) and local field 

potentials (LFPs) are important neuronal information for 

understanding human intention, behaviors, biological 

phenomena, etc. In addition to the recording of APs and 

LFPs, the monitoring of neurotransmitters and calcium ions 

provides crucial neuronal information for unveiling complex 

neuronal phenomena [2], [3]. APs and LFPs can be 

monitored as voltage signals through the microelectrode 

array [4], [5]. The amplitude of APs ranges from tens of μV 

to hundreds of μV, whereas LFPs change from hundreds of 

μV to several mV [2]. Neurotransmitters and calcium ions 

can be monitored as current signals generated by the 

electrochemical sensor and photodiode, respectively [3]. 

To monitor the weak voltage signals of APs and LFPs, the 

electrical neural recording system needs to process the input 

voltage signals with appropriate conversion gain and 

resolution while maintaining low power and low noise 

performances. Also, when considering the electrical neural 

recording system operating in vivo, the overall power 

consumption of the recording system needs to be restricted 

to avoid tissue damage due to the heat and extend the battery 

lifetime. Therefore, the electrical neural recording system 

needs to be implemented energy-efficiently by consuming 

low power and achieving low input-referred noise. For a 

holistic understanding of the brain by obtaining sufficient 

neural information, a high density of the neural recording 

system is required. However, the high-density recording 

system can induce increased overall power consumption. So 

each neural recording channel needs to be designed to 

consume low power while achieving low input-referred 

noise. In addition, since the high-density recording system 

needs to be implemented within a limited silicon area, each 

neural recording channel must be designed to occupy a small 

design area. 

To implement the energy-efficient multichannel neural 

recording system, three design techniques are reviewed with 

the basic properties of the electrical neural recording system: 

1) energy-efficient input structure of the operational

transconductance amplifier [6]−[13], 2) neural recording

front-end design using the low supply voltage [14]−[17], and

3) neuronal activity-dependent recording system by

scheduling power and controlling data transmission

[18]−[22]. The operational transconductance amplifier used

in the first amplification stage of the entire recording system

determines the overall input noise performance and system

power consumption. Therefore, the amplifier of each

amplification stage needs to be carefully designed according

to the required electrical performance. The straightforward

way to reduce the entire power consumption is to lower the

supply voltage. However, since the reduced supply voltage

affects the dynamic range and transistor operation, the

supply voltage needs to be carefully set while ensuring the

operation of each transistor and ensuring a sufficient

dynamic range. Also, for reducing the power consumption

of the entire recording system, the power-consuming blocks,

such as the amplifier and communication circuits, can be

enabled only when the neural signal is present.

This paper is organized as follows. Basic properties of the 

neural recording system and energy-efficient design 

techniques are presented in Section II. Section III concludes 

this paper with design considerations of the recording system. 
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II. ENERGY-EFFICIENT DESIGN TECHNIQUES 

A. Basic Properties of Electrical Neural Recording System   

Since the development of the low-noise amplifier (LNA) 

employing the capacitively-coupled topology [6], [7], many 

research teams proposed multichannel electrical neural 

recording systems based on the design of the capacitively-

coupled topology. The capacitive input-based LNA can 

reliably monitor APs and LFPs with low power and low 

noise characteristics. Also, thanks to the capacitive input 

characteristic, the DC electrode offset is efficiently filtered 

out. Fig. 1(a) shows the entire neural recording chain from 

the microelectrode array [5] detecting APs and LFPs to the 

front-end circuits processing the detected neural signals. 

For simplifying the description of the front-end circuits, 

the schematic of the recording system is drawn as a single-

ended structure. It is assumed that the DC bias point of the 

amplifier output is properly set with the half-VDD. When 

implementing the multichannel neural recording system, the 

number of the analog front-end channels is set equal to the 
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Fig. 1. (a) Neural recording chain from the microelectrode array detecting APs and LFPs to the front-end circuits processing the detected voltage signals. (b) 

Amplification stage of the neural signals within the supply voltage. 
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Fig. 2. Differential input stages used in the OTA of the low-noise amplifier: (a) PMOS input pair, (b) NMOS input pair, (c) inverter-based (or current reuse) 

input pair, and (d) stacked inverter-based input pair. 
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number of the microelectrode array channels [7], [10]. 

However, when the number of the microelectrode array 

channels increases to several hundred or the order of ten 

thousand, the number of the analog front-end channels 

cannot be designed as much as the number of the 

microelectrode array channels due to a limited silicon area. 

Thus, to overcome the design area issue, the switch matrix 

can be used to interface between a large number of the 

microelectrode array channels and a limited number of the 

front-end channels [23], [24]. 

The electrical neural signals detected through the 

microelectrode array are amplified by the analog front-end 

channel and digitized by the analog-to-digital converter 

(ADC) as shown in Fig. 1(a). To area-efficiently implement 

the entire neural recording system during the digitization of 

neural signals, a single ADC can be shared by multiple 

analog front-end channels through the multiplexer, as shown 

in Fig. 1(a) [10], [15], and [24]. Fig. 1(b) shows the 

amplification stage of the neural signals within the supply 

voltage. VDD-LNA and VDD-PGA are supply voltages used in 

LNA and programmable gain amplifier (PGA), respectively. 

The amplitude of detected APs resides at the μV level, 

whereas LFPs have the amplitude from the μV level to the 

mV level. Typically, the μV-level neural signals are first 

amplified by the LNA and further amplified by the PGA for 

providing enough conversion resolution for the ADC (Fig. 

1(b)). Then, the PGA output is digitized by the ADC through 

the multiplexer and ADC driving buffer (Fig. 1(a)). 

In the neural recording chain from the LNA to the ADC, 

the ADC driving buffer driven by VDD-Buf is a power-hungry 

building block. Thus, to implement the energy-efficient 

multichannel neural recording system, the power 

consumption of the buffer needs to be saved, and the dual 

sample-and-hold (S/H) technique can be applied to the ADC 

for mitigating the power consumption of the buffer [10]. 

In summary, a vast amount of neural signals must be 

decoded to expand the understanding of the brain, which 

means the number of recording channels needs to increase. 

Therefore, the multichannel neural recording system needs 

to be energy- and area-efficiently designed by optimizing 

circuits, such as the analog front-end channel, buffer, and 

ADC, without performance degradation. 

 

B. Energy-Efficient Input Structure of OTA 

In the whole chain of the neural recording system, the 

LNA is the most sensitive stage to noise and power 

consumption. The LNA amplifies the weak voltage signals 

detected from the high-impedance microelectrode array 

which is directly related to noise contribution. Therefore, the 

LNA should be designed to minimize the noise generated by 

the circuit itself. When designing the capacitive input-based 

LNA, the operational transconductance amplifier (OTA) is 

used to create an accurate closed-loop gain by providing 

sufficient open-loop gain. Also, the OTA is a key block that 

determines the overall input-referred noise and area of the 

entire recording channel. The OTA input is typically 

designed as a differential structure to filter out the common-

mode noise and implemented to be achieved high 

transconductance gm. In the LNA design, the gm of the OTA 

input stage determines the overall input noise performance 

and needs to be high for reducing thermal noise contribution 

[6], [7]. For mitigating the flicker noise contribution from 

the LNA, the input stage of the OTA is designed with large 

size. In summary, to lower the thermal noise and flicker 

noise contributions from the LNA, the operation region of 

the OTA input stage is pushed into the subthreshold region, 

thereby achieving high gm, and the OTA input pair is 

designed with a large size [6], [7]. 

Fig. 2 shows differential input stages used in the OTA of 

the LNA. Figs. 2(a) and (b) are input pairs implemented by 

using PMOS and NMOS, respectively, [6], [7], [18], [22], 

and [23]. Compared to the designs of Figs. 2(a) and (b), the 

inverter-based (or current reuse) input pair can boost gm by 

about two times while consuming the same bias current as 

the bias current in the PMOS and NMOS input pairs, as 

shown in Fig. 2(c) [8]−[11], [15]−[17]. By stacking PMOS 

and NMOS in a single current branch, the noise efficiency 

factor (NEF) is improved without an increase in power 

consumption. Thus, the inverted-based input pair is widely 

employed for designing the energy-efficient LNA. However, 

the design area increases by about two times compared to the 

PMOS (or NMOS) input pair. That is why the inverter-based 

topology is usually applied to the noise- and power-sensitive 

stage such as LNA. After amplifying neural signals through 

the LNA, the PGA further amplifies the LNA output signal. 

Since the LNA output signal is on the order of mV, the noise 

performance required by the PGA is more relaxed than the 

LNA. Thus, to save the design area, the PMOS (or NMOS) 

input pair is employed for the PGA input stage while 

consuming a very low bias current. 

To further improve the NEF of the LNA, the inverter-

based topology can be stacked, whereas the design area 

increases, as shown in Fig. 2(d) [12], [13]. Also, when 

applying the stacked inverter-based input pair to the LNA, 

the bias point of the OTA needs to be carefully set. 

Compared to the single inverter-based input pair driven by 

VDD-LNA, the stacked inverter-based input pair can require a 

higher supply voltage than VDD-LNA, resulting in increased 

power consumption. Also, if the low supply voltage is used, 

the gate terminals of the stacked inverter-based input pair 

should be individually biased for proper DC bias setup, 

compared to the single inverter-based input pair where 

PMOS and NMOS gate terminals are tied together and 

biased [12], [13]. 

 

C. Front-End Channel using Low Supply Voltage 

The straightforward way to lower the system power 

consumption is to reduce the supply voltage throughout the 

whole recording chain (e.g., VDD-LNA, VDD-PGA, and VDD-Buf) 

[14]−[17]. In the multichannel recording system, multiple 

LNAs and PGAs share a single ADC for an area-efficient 

design, meaning that most of the power consumption in the 
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entire recording system occurs in the array composed of the 

LNAs and PGAs. 

As shown in Fig. 3(a), when the LNA and PGA are driven 

by using the same supply voltages (VDD-LNA1 = VDD-PGA1), the 

LNA output has sufficient voltage headroom, whereas the 

PGA output has less voltage headroom because the signal is 

further amplified than the LNA output. For optimizing the 

power consumed by each amplification stage, the dual 

supply voltages, VDD-LNA2 and VDD-PGA2, can be applied to 

reduce surplus voltage headroom while keeping the 

amplifier in the proper operation region, as shown in Fig. 3(b) 

[15], [16]. For operating the recording system using dual 

supply voltages, the external low supply voltage can be up-

converted to a higher supply voltage through one charge 

pump and one low-dropout (LDO) regulator [15]. Also, the 

dual supply voltages can be generated through the buck 

converter [16]. Then, the low supply voltage is used for the 

LNAs, and the higher supply voltage is employed for the 

PGAs. Thus, wasted power is reduced by optimizing the 

voltage headroom of each amplification stage. 

However, when operating the OTA composed of the 

inverter-based input pair by using a low supply voltage, the 

overdrive voltage of input circuits may not be set to push the 

devices into the saturation (or subthreshold) region. To 

overcome this DC bias setup issue, the individual bias 

voltages can be applied to the OTA input terminals by 

placing the decoupling capacitor between PMOS and NMOS 

of the inverter-based input pair [16], [17]. The recording 

system driven by using the low supply voltage can reduce 

the overall power consumption of recording channels, 

whereas a well-regulated supply voltage is required. Also, 

the circuits driven under the low supply voltage can be 

vulnerable to PVT (process, voltage, and temperature) 

changes, meaning that the recording system can experience 

unstable operation when implanted in vivo. Therefore, 

sophisticated design techniques are required to ensure 

reliable system operation. 

 

D. Neuronal Activity-Dependent Recording System 

When the neural recording system is designed by 

incorporating the wireless communication circuits, the 

digitized neural data through the ADC can be transmitted to 

the RF transmitter. Throughout the whole recording system, 

the analog front-end channel array, buffer, and RF 

transmitter are power-hungry building blocks. However, 

when conducting the recording experiment in vivo (or in 

vitro), the recording system doesn’t always monitor 

meaningful neural signals from the microelectrode array, 

resulting in significant power consumption. The circuits 

always perform digital conversion and wireless data 

transmission, even for meaningless neuronal data, which 

wastes the overall system power considerably. To overcome 

this wasted power issue and ensure energy-efficient system 

operation, the neuronal activity-dependent recording system 

is developed as shown in Fig. 4 [18]−[22]. 

Fig. 4 describes the block diagram of the wireless neural 

recording system incorporating the spike detector and 

power/data management circuits. The spike detector always 

senses the neural signals to snatch the spikes. Then, 

according to the detected neural spikes, the spike detector 

generates the control signals for delivering power and 

transmitting neural data. Neural spike detection can be 

conducted through analog signal processing [18], [19] and 

digital signals processing [20], [21]. During the spike 

detection in the analog domain, the amplified neural signal 

is compared to a manually (or automatically) set threshold 

through the comparator. When the neural signal exceeds the 

threshold, the comparator generates enable signal for 

controlling the power delivery and data transmission. During 

the spike detection in the digital domain, digitized neural 

data is stored in the intermediate memory used to calculate 

the threshold. Then, the detected neural spike is transmitted 

to the output memory. Through this neuronal activity-

dependent system operation, the power consumed for 

meaningless signals can be saved. Therefore, the overall 

system power can be considerably reduced, and the battery 

lifetime also can be prolonged. 

III. CONCLUSION 

This paper briefly summarizes the energy-efficient design 

techniques for the electrical neural recording system. In 

addition to the energy-efficient design techniques introduced 

here, various factors need to be considered to ensure the 

reliable operation of the entire recording system. To process 

a vast amount of neural signals, the number of neural 

recording front-end channels must also increase within a 

limited silicon area [23], [24], meaning that the area of the 
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Fig. 3. Amplification stage of the front-end channel using (a) same supply voltages (VDD-LNA1 = VDD-PGA1) and (b) dual supply voltages (VDD-LNA2 ≠ VDD-PGA2). 
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single front-end channel needs to be reduced. After 

implanting the microelectrode array into the brain, the 

microelectrode array shows high output impedance (or 

tissue-electrode impedance), which can cause a loading 

effect between the electrode output and the input of the front-

end channel. To mitigate this loading effect, the input 

impedance of the front-end channel must be higher than the 

output impedance of the electrode site through the 

impedance boosting techniques [25], [26]. In addition, even 

if electrical stimulation artifacts are coupled to the input of 

the front-end channel, the front-end channel must process the 

voltage signal without signal distortion and voltage 

saturation by widening the system dynamic range [25], [26]. 
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