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Abstract — This paper presents a design methodology for high-
linearity capacitively coupled (CC) continuous-time delta-
sigma modulator (CTDSM). The third-order loop filter enables
sufficient noise-shaping with a low oversampling ratio (OSR).
The chip is implemented in a 180-nm CMOS process with an
active area of 1.65 mm?, drawing 232.2 uA at a 1.8 V supply.
The proposed CC-CTDSM has a 19.4 nV/yHz input-referred
noise density, 1.9 uV offset, 0.08% gain error, 16 ppm integral
nonlinearity (INL), and 140 dB common-mode rejection ratio
(CMRR) within an input range of 60 mVp,.

With -110.1 dB total harmonic distortion (THD), excellent
dynamic linearity performance is achieved owing to the CCIA-
integrated design and chopping artifact rejection technique.

Keywords—CCIA, Chopping, Continuous-time Delta-
sigma Modulator (CTDSM), High-linearity

1. INTRODUCTION

A sensor readout IC is a fundamental circuit block used in
instrumentation, bio-medical, and automotive applications.
Consumer electronic sensors such as temperature, humidity,
and acceleration sensors output electrical signals close to a
DC with an amplitude of tens of millivolts. Readout ICs
should have low noise, low offset, a high common-mode
rejection ratio (CMRR), and high input impedance. In
addition, the output of piezoresistive accelerometers, used in
car crash and tactical weapon testing, and bio-potential
signals such as electrocardiogram (ECG) and
electroencephalogram (EEG) are AC responses. Owing to
the increasing diversity in sensor applications, the demand
for high dynamic linearity performance has increased.

As shown in Fig. 1, a CCIA is a capacitive gain amplifier
that adopts chopping as a dynamic offset cancellation
technique, thereby achieving low noise and low offset. The
CCIA is suitable for measuring DC signals because the gain
is determined by the ratio of Cp and Ci,, which is insensitive
to mismatch and exhibits high gain accuracy. However,
when measuring AC signals, spikes caused by chopper
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Fig. 1. (a) sensor ROIC with a CCIA, (b) capacitively coupled
CTDSM.

switching and the nonlinearity of the CCIA limit the dynamic
linearity of the entire system. In [1], a THD of -76 dB was
achieved at an input range of 80 mVy,. Achieving higher
dynamic linearity using CCIA necessitates a considerably
larger quiescent current than that consumed by noise
requirement. This is inefficient in terms of noise-dominated
designs. Consequently, a sensor ROIC with high dynamic
linearity (THD < -100 dB) using the CCIA has not been
reported thus far.

In this paper, we present a CC-CTDSM, as shown in Fig.
5. The CTDSM embeds the CCIA at the front-end to
desensitize the nonlinearity of the CCIA. This architecture
facilitates a highly linear sensor ROIC. As the CCIA is
incorporated in the modulator, the CCIA only deals with the
shaped quantization noise as the in-band STF is unity. The
effective signal range is shrunk and the op-amp lies in a more
linear swing range. Because it hardly provides a signal-
dependent error, it can significantly increase the ROIC
linearity. However, the CCIA chopper causes problems in the
proposed CC-CTDSM.

The chopping artifacts generated in the CCIA are rejected
with sampling frequency chopping and optimized RRL, and
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chopping-induced in-band noise increase, distortion, and
loop instability are avoided. Due to this feature, the proposed
CC-CTDSM can employ the non-return-to-zero (NRZ)
digital-to-analog converter (DAC) as the main feedback
DAC of the modulator, which has alleviated amplifier speed
requirement and better stability than the return-to-zero (RZ)
DAC. Furthermore, no extra analog filters are located before
or inside the ROIC owing to the inherent anti-aliasing
characteristic of the CTDSM. This ROIC enables accurate
sensing of AC signals since the internal chopping spikes are
totally suppressed and the harmonic distortions of the CCIA
are desensitized in the modulator loop.

The prototype chip is implemented in a 180-nm CMOS

technology. It achieves 19.4 nV/vHz, -110.3 dB THD, 1.9

uwV input-referred offset, 0.1% gain error, and 16 ppm INL
over an input range of 60 mVp.

1. DESIGN CONSIDERATIONS FOR CC-CTDSM

A. System Design

The chopping frequency of the proposed CC-CTDSM is
equal to the sampling frequency. This condition forces a
significantly higher chopping frequency to achieve sufficient
quantization noise shaping. It enables to build a high-order
loop filter with a 5-bit quantizer. Hence, this is possible to
get a sufficient SQNR with a low OSR. In this article, a 3%-
order loop filter is used with an OSR of 40. The signal
bandwidth is 1 kHz, and the maximum out-of-band gain of
the NTF is 2.5.
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In order to build a noise transfer function (NTF) of the
system, we used the Delta-Sigma toolbox to synthesize the
NTF. The excess loop delay is assigned by 0.575 for the
quantizer and DAC process time. The NTF is synthesized in
discrete-time transfer function and converted into
continuous-time format through impulse response matching
as shown in Fig. 2. We can take into account the non-
idealities of the amplifiers used in integrators. In the case of
the first integrators, the amplifier parameters are extracted
from CADENCE simulations. The two-stage miller-
compensated amplifier gain is 130 dB and the bandwidth is
6 time of the sampling frequency. The impulse response of
the DT and CT loop filters are shown in Fig. 3 and their
difference is presented in Fig. 4.

In Fig. 5, the gain of the CCIA, G (= Ci/Cp) is fixed to 50
to amplify the millivolts range of the transducer output for
the following ADC. As the CCIA itself is a closed-loop

%107

N
/
/

o
T

loop filter pulse response error

1 2 3 4 5 6 7 8
t
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system, the finite bandwidth effect is simplified by
generalizing CCIA as a one-pole system. Assuming that the
op-amp has one pole, the CCIA provides an extra delay in
front of the loop filter. The linear model of CC-CTDSM,
including finite bandwidth of CCIA, is presented in Fig. 6. It
is desirable that the CCIA bandwidth be sufficiently high to
disregard the excess loop delay. In this design, the dominant
pole of CCIA is near the sampling frequency, f;. The delay is
1/(2mfs) =~ 0.16Ts in the first-order approximation. This delay
can be compensated by an excess loop delay compensation
circuit, as shown in Fig. 7.

B. CCIA design

Fig. 8 shows a circuit diagram of the CCIA. A two-stage
miller compensated op-amp is implemented with the RRL.
The CM bias resistor is implemented using subthreshold
biased transistors [2]. Both NMOS and PMOS transistors are
used to provide a fast CM settling time. The resistance
exceeds 50 MQ in the steady state at half VDD bias, which

has negligible noise contribution.

Fig. 9 shows a schematic of the two-stage op-amp. The
op-amp input stage is a folded-cascode OTA with PMOS
input transistors. The tail current source of the input stage is
boosted for a higher CMRR. The source transistors of the
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Fig. 8. Front-end of CC-CTDSM (impedance boosting loop, bias
resistor, two-stage op-amp, and RRL)
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cascode stage are biased in strong inversion to reduce their
thermal noise. The output choppers of the op-amp are placed
between the current sources to avoid reduction in the op-amp

gain

due to

parasitic

capacitors. The first-stage

transconductance G, is 342 pS. The DC gain of the op-amp
is 130 dB, the unity-gain frequency is 5.4 MHz, and the
phase margin is 66° as presented in Fig. 10.
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The input-referred noise of the proposed system is
dominated by G,,;. The G, noise and the following loop
filter noise are attenuated by the open-loop gain of G,,; and
closed-loop gain of the CCIA, respectively. As shown in Fig.

11, the CCIA input-referred noise is 19 nV/VHz and the 1/f

corner is 0.2 Hz. The //fnoise is sufficiently attenuated by a
chopping frequency of 80 kHz. The closed-loop pole of the
CCIA is 80 kHz, which does not influence the transfer
function of the following integrators.

The compensation transconductance G,3 and sensing
capacitor C; in the RRL determine the conversion gain,
which involves noise-folding. For minimizing noise-folding,
Gns and C; is set to 4.8 uS and 100 fF, respectively. In
addition, 4, is a folded-cascode OTA with a 90-dB DC gain
to achieve a steep loop gain of the RRL.

C. CTDSM design

Fig. 12 shows the loop filter used in the CC-CTDSM. A
third-order loop filter with an optimized NTF zero is
implemented for energy-efficient quantizing compared to
the low-order design. The CCIA structure is utilized to avoid
an extra feedback DAC. Capacitor Crr1 and Crrz provide a
feedforward gain. The first integrator is chopped because the
preceding capacitive gain stage does not completely
suppress the 1/f noise of the integrator. To avoid chopping
aliasing, the chopping frequency of the integrator is also
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equal to the sampling frequency. For optimized NTF zero,
the resonator resistor should be 675 MQ, which is
excessively bulky. Instead, the T-network comprises Rx, Ry,
and R;, which form an equivalently large resistance of
R:(Rx/Ry) [3]. The input resistor, R1, dominates the loop
filter noise because the first integrator attenuates the noise in
the following stages. However, driving an excessively small
R1 is a burden on CCIA. Therefore, Ry of 500kQ is used in
this design. Besides, R, and Rz are 25 and 50 MQ,
respectively, thereby lowering the op-amp output loads.

All capacitors in the loop filter have a 5-bit tuning range
of 50% from nominal value to compensate the RC time
constant variation. In addition, a dedicated RC calibration [4]
circuit is implemented as shown in Fig. 13.
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As the 5-bit quantizer and DWA logic contribute to the
operation time, an excess loop delay should be assigned to
secure modulator stability. Therefore, a half-cycle of the
sampling frequency is assigned. An ELD compensation path
is easily implemented because loop filter input contains a
feedback DAC component. The Cep and Cj ratios comprise
the compensation gain. The DWA logic is implemented as
Fig. 14. Its timing diagram and operations are presented in
Fig. 15. Through the behavioral simulations, the modulator
can guarantee over 110 dB SNDR after the DWA as shown
in Fig. 16.

The SAR-type quantizer has the highest power efficiency
under slow (80 kS/s) and low-resolution conditions (5-bit).
Fig. 18 shows a single-ended diagram of the 5-bit SAR
quantizer used in this design. The unit capacitor of the
capacitive DAC of the SAR quantizer is 10 fF.
Asynchronous SAR logic is implemented to avoid the use of
an additional clock signal. The main feedback DAC of the
CC-CTDSM is composed of a thermometer-based 31-unit
CDAC cell, as shown in Fig. 17. The quantizer samples the
loop filter output and digitizes it at the falling edge of f.
After a half clock cycle, the DAC output Vpac, is updated
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at the rising edge of fs. Because the DAC cell incorporates
chopping, the update rate of the D flip-flop (DFF) is set as
2f; to generate the opposite data.

A prototype of the proposed CC-CTDSM is implemented
using a 180-nm CMOS process. Fig. 19 presents a
photograph of the fabricated chip, where the active are,
including the RC calibration circuit, is 1.65 mm?2. The chip
consumes a current of 232.2 uA at a 1.8 V supply voltage.

Fig. 20 shows measured PSD of the proposed CC-
CTDSM with input shorting and Fig. 21 shows sine wave
test for a dynamic linearity measurement. Fig. 22 shows
measured DC performance of the ROIC. A performance
summary and comparison with state-of-the-art sensor
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Table I. Comparison with State-of-the-art sensor readout ICs

o ISSC 1SSC L-SSC SOVC SOVC ISSC
I'his work _
2019 [5] 2019 6] 2019 |7] 2017 [8] 2018 [9] 2020 [10]
Architecture CC-CTAXM | CCIA+DTAXM | CCIA+CTAXM | CC-CTAXM | CC-CTAXM | CC-CTAXM PLL-AYM
Technology (nm) 180 130 180 180 40 180 40
Active Area (mm?) L.65 0.63 0.73 0.75 0.06 1.1 0.025
Supply Voltage (V) L8 3(A) / 1.5(D) 18 1.8 12 1 0.8(A) / 0.6(D)
Supply Current (pA) 232.3 326(A) / 20(D) 1200 1200 21 6.5 3.4(A) / 3.2(D)
Bandwidth (klz) 1 0.0025-0.04 2 2 2 0.15 10
Input Range (mV ;) 60 43.75 — 5600 20 16 100 360 100 / 400
CM Input Range (V) 0-1.8 0-3 0-3.3 0-3.3 0-12 0-1.2 0-0.8
Offset (V) LY 1.87 7 300 - - 50
l"p“;nh::“jj_g“my 19.4 44 37 45 140 265 36
CMRR (dB) 140 126 134 137 - 84 83
Gain Error (%) 0.1 - 03 0.2 - - -
FoM* (dB) 155.0 169.3(@gain=1) 151.1 148.6 154.0 160.9 172
NEF / PEF 11.2 /2248 6.6/ 130 5.0/ 45 6.1/ 67.0 22,6/ 612 26 / 676 —/89
THD (dB) -110.3 - - - 82 104,75 Q#*
* FoM = 10log(VEg /(8 - vZ - P)) ** SFDR *** PEF = NEF* - Vpp
readout ICs are depicted in Table 1. The left three readout REFERENCES

ICs employ the CCIA front-end. These ICs are specialized
in DC measurement systems such as a Wheatstone bridge
sensor with low input-referred noise, offset, and high CMRR.
In contrast, the right three paper are focused on AC
measurements, such as Hall sensor or biopotential sensors
with high dynamic linearity performance. However, they are
not capable of AC measurement. The proposed sensor
readout IC, however, is capable of both DC and AC

measurement. It achieves 19.4 nV/vHz, -110.3dB THD, 1.9

nV input-referred offset, 0.1% gain error, and 16 ppm INL
over an input range of 60 mVp.

IV. CONCLUSION

This paper presents a high-dynamic-linearity CC-CTDSM
for sensor readout applications. To obtain a high dynamic
linearity, the CTDSM employs a CCIA as the front-end
inside the loop; thus, the requirements of the op-amp are
relaxed and CCIA processes only shaped quantization noise
component and relax the input-dependent issues, i.e. input
swing range and harmonic distortions. Using the chopping
frequency as the sampling frequency enables us to ignore
chopping aliasing and also reject chopping ripples and
spikes. The third-order loop filter and 5-bit quantizer allow
for a low chopping frequency. The DWA prevents a
reduction in linearity by a static mismatch in the main
feedback DAC. The prototype chip is implemented in 180-
nm CMOS technology, and it is capable of reading out both
AC and DC responses. The measurement results prove that
the proposed architecture achieves the highest THD among
previously reported sensor readout ICs.
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