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Abstract - In this paper, we present a hardware-software co-

design methodology for analog compute-in-memory (CIM) 

accelerators with 1-bit sense amplifiers (SAs). While CIM 

macro using 1-bit SAs achieves high energy efficiency by 

eliminating multi-bit analog-to-digital converters (ADCs), it 

faces two key challenges: limitations in BNN layer size and the 

impact of SA random noise. Through neural network splitting, 

which divides layers into sub-blocks matching the size of the 

CIM macro rows, the BNN model fits the CIM macro while 

preserving accuracy. Additionally, the SA output probability 

model is obtained through measurements and replaces the 

binarization function of BNN, incorporating SA random noise 

into the BNN training process. Using these two approaches, we 

develop a framework to retrain BNNs tailored to the CIM 

accelerator using 1-bit SAs. The prototype 128x128 CIM 

accelerator fabricated in 28 nm technology achieves 97.81% 

MNIST inference accuracy and 12.6x reduction in readout 

energy compared to the prior work using 5-bit ADCs. 
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I. INTRODUCTION 

The development of deep neural networks (DNNs) has 

revolutionized various workloads with the high inference 

accuracies of the models. The size and computational 

complexity of models have increased significantly with the 

demand of complicated tasks. The digital accelerators 

utilizing parallelism have been developed for the DNN 

workloads which is dominated by massive amounts of 

matrix-vector multiplications (MVMs). The data transfer 

between computing unit and memory, however, significantly 

limits the throughput and energy efficiency of the 

accelerators [1]. To reduce the memory access, prior works 

optimized dataflow to maximize data reuse and compressed 

the model using quantization [2], [3].  

To this end, the analog compute-in-memory (CIM) which 

integrates computation and memory has been proposed [4]. 

As shown in Fig. 1, the weights are stored in the bit cells of 

the CIM macro, and multiplications with the input 

activations fed to the word lines (WLs) are performed. The 

multiplication outputs of all the cells in the same column are 

accumulated in analog domain on the bit line (BL), which 

enables parallel access of all rows. CIM achieved high 

energy efficiency with this fully parallel multiply-

accumulate (MAC) using analog computing. Meanwhile, the 

multi-bit analog-to-digital converter (ADC) which converts 

the accumulated analog voltage/current to digital output 

consumes significant energy, and this limits the gain 

obtained from the energy efficient analog computing. To 

reduce the overhead of output readout, low precision ADCs 

(e.g. 5-bit ADC) are used by quantizing the partial sum 

results. To further increase the energy efficiency of CIM, the 

multi-bit ADC can be replaced with the 1-bit sense amplifier 

(SA) by running the binary neural network (BNN). The 

accumulated results can be directly quantized to the 1-bit 

output activations of BNN with the 1-bit SA.  

However, there are two challenges in mapping the BNN 

to the CIM macro using 1-bit SA as shown in Fig. 2. 1) The 

entire MAC operation required for computing a single output 

activation has to be performed in each column. In other 

words, the number of rows should be larger than the number 

of weights for a single output. Otherwise, the multi-bit 
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Fig. 1. The architecture of CIM macro with multi-bit ADC. 
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partial sums should be computed multiple times, and it 

requires multi-bit ADC. The limited number of rows in CIM 

macro due to the signal-to-noise ratio and readout delay 

makes this challenging. 2) The random noise of SA induces 

error during the 1-bit quantization of the output activation, 

resulting in inference accuracy drop. The modification of the 

BNN, therefore, is required to address these challenges. 

This work presents a hardware-software co-design for 

analog CIM accelerators using 1-bit SAs. The BNN is 

retrained using neural network splitting and SA output 

probability model. The prototype chip achieves measured 

test accuracy of 97.81% for MNIST dataset. 

The remainder of this paper is organized as follows. 

Section II presents two methodologies of the hardware-

software co-design for the analog CIM accelerator using 1-

bit SAs. Section III shows the measurement results of the 

prototype chip. Section IV concludes this work. 

II. PROPOSED HARDWARE-SOFTWARE CO-DESIGN FOR 

ANALOG CIM ACCELERATOR USING 1-BIT SENSE AMPLIFIERS 

A. Neural network splitting 

BNNs use 1-bit representations for both input activations 

and weights. Output activations are computed by applying 1-

bit quantization to the MAC results of inputs and weights, as 

described by the following equation:     

OUT =  Binarize(∑ 𝑊𝑘𝐼𝑁𝑘
𝑁
𝑘=1 )         (1) 

Here, N denotes the number of inputs and weights required 

to compute the output. The conventional CIM macro can 

compute outputs even when N exceeds the number of rows 

in the macro by using multi-bit ADCs to iteratively compute 

partial sums. In contrast, the CIM macro with 1-bit SAs 

directly execute the Binarize() function in equation (1), as 

shown in Fig. 3. In this design, the number of rows should 

be larger than N. In other words, it is required that all MAC 

operations for the output is completed in a single column of 

the CIM macro. However, due to challenges such as SNR 

degradation and readout delay, analog CIM macros are 

typically designed with a limited row count, often in the 

hundreds [4]. Meanwhile, the weight vector size, N, of the 

simplest BNN model for MNIST is 2048, which exceeds the 

typical number of rows in CIM macro. This mismatch limits 

the direct mapping of conventional BNNs to CIM macro 

with 1-bit SAs.  

To overcome this limitation, we adopt the input splitting 

technique proposed in [5] to rebuild the BNN. As shown in 

Fig. 4, the BNN layer is divided into multiple sub-blocks, 

each with a weight size matching the number of rows in the 

CIM macro. Intermediate activations are added between 

input activations and output activations. This enables each 

 
Fig. 2. The architecture of CIM macro with 1-bit SA and challenges in 

mapping the BNN to the CIM macro. 
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Fig. 3. The MAC operation of CIM Macro with 1-bit SA. 
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Fig. 4. The reconstruction of BNN using input splitting. 
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sub-block to be mapped onto a CIM macro. To maintain the 

network complexity, weights between intermediate and 

output activations are fixed to 1, as described in [5]. The 

reconstructed BNN model is then retrained. 

The neural network splitting achieves high accuracy for a 

wide range of row counts which can vary depending on the 

design constraints. For the baseline model, we used the BNN 

MLP for MNIST from [6]. The model is reconstructed for 

four typical numbers of CIM rows (64, 128, 256, 512) as 

shown in Table 1. The reconstructed models are trained and 

Table 2 shows their inference accuracy. For all cases, the 

maximum accuracy drop was 0.33%, demonstrating the 

feasibility of applying input splitting to CIM macros. 

 

B. Sense amplifier output probability modeling 

As shown in Fig. 3, the SA performs 1-bit quantization of 

the MAC operation results. Conventional BNNs utilize 

deterministic binarization defined by the Sign() function: 

           Sign(𝑥)  = {
+1,    𝑥 ≥ 0
−1,    𝑥 < 0

        (2) 

However, due to the influence of random noise, the SA does 

not perfectly replicate the behavior of Sign(). Therefore, 

running the conventional BNN directly on the CIM 

accelerator results in substantial accuracy drop, depending 

on the magnitude of the random noise. 

The 1-bit SA used in the CIM macro is implemented with 

a StrongARM latch, as shown in Fig. 5. This design uses a 

clocked differential pair, offering high sensitivity and low 

static power consumption [7]. The SA takes the analog BL 

voltage of the MAC result as its input and outputs a 1-bit 

digital value. However, during this binarization process, 

random noise sources, such as thermal noise, cause the SA 

output to exhibit a probabilistic distribution near the 

threshold (MAC value of 0). 

The top plot of Fig. 6 shows the measured output 

probabilities of the prototype chip’s 128 column SAs as a 

function of the MAC value. By averaging them, the SA 

output of the CIM accelerator can be modeled as a 

probabilistic distribution with a variation of σNoise = 3.84 

digital codes, as shown in Fig. 6 (bottom). Based on this 

probability model, a new binarization function can be 

defined: 

 Binarize(𝑥)  = {
+1,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑥)        
−1,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝(𝑥)

  (3) 

Here, p(x) represents the SA output probability model. By 

replacing the Sign() in the BNN with this modeled 

binarization function, Binarize(), the effect of the SA random 

noise can be incorporated into the training process. During 

training, the straight-through estimator with hard tanh was 

applied to the backpropagation of the binarization layer, as 

in conventional BNNs. This method is performed on a per-

chip basis, since the SA output probability model p(x) varies 

from chip to chip due to process variations. 

The measurement results of the prototype analog CIM

 
Fig. 5. The schematic of the 1-bit sense amplifier. 
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Fig. 6. The measured output probabilities of 128 1-bit sense amplifiers and 

1-bit sense amplifier output probability model. 

Measured output probabilities of 128 SAs

SA output probability model
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σNoise = 3.84* 

*Digital code

TABLE I. The baseline BNN MLP for MNIST dataset and the 

reconstructed BNN applying input splitting. 

 

Sub-block size Layer

Baseline 748-2048-2048-2048

64 748-(32x64)-(32x64)-2048

128 748-(16x128)-(16x128)-2048

256 748-(8x256)-(8x256)-2048

512 748-(4x512)-(4x512)-2048

TABLE II. Test inference accuracy of the baseline BNN and the 

reconstructed BNNs for MNIST dataset. 

 

Sub-block size Test Accuracy (%)

Baseline 98.25

64 97.92

128 98.02

256 98.12

512 98.21
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Fig. 7. The measurement framework for BNN inference accuracy evaluation using hardware-software co-design.  

accelerator using a BNN trained with the two methodologies 

– neural network splitting and SA output probability 

modeling – will be discussed in the next section. 

III. RESULTS AND DISCUSSION 

The prototype chip of the analog CIM accelerator is 

fabricated in a 28 nm CMOS technology. The CIM 

accelerator consists of 128x128 CIM macro, a digital 

controller, interface logics for I/O.  

Fig. 7 shows the measurement framework for evaluating 

the BNN inference accuracy using the proposed hardware-

software co-design. The framework consists of the following 

steps. First, the SA output is measured using the 

measurement system consisting of a host PC and FPGA. 

Random weights and inputs are fed to the CIM accelerator, 

and the outputs of 128 SAs are read as the results of MAC 

operations. The SA output probability model is derived from 

the read output data. Second, CIM-aware BNN training is 

performed. The baseline BNN is reconstructed through 

neural network splitting and the SA output probability model, 

and the reconstructed model is trained on GPUs. Finally, the 

inference accuracy of the trained BNN model is measured on 

the CIM accelerator using the test dataset. 

We trained the baseline BNN MLP for MNIST from 

Section II using this framework and measured the inference 

accuracy on 10k test images. Fig. 8 shows the comparison 

between the inference accuracy of the baseline BNN model 

and the CIM accelerator. By reconstructing and retraining 

the BNN considering the characteristics of the CIM 

hardware, a high accuracy of 97.81% on the CIM accelerator 

is achieved, only 0.21% lower than the baseline. 

Additionally, replacing multi-bit ADCs with 1-bit SAs 

significantly reduces the energy consumption of the output 

readout. As shown in Fig. 9, our prototype chip consumes 

12.6 times less energy for A/D conversion compared to the 

CIM macro using 5-bit ADCs [8]. 

IV. CONCLUSION 

 

This paper presents a hardware-software co-design for 

analog CIM accelerators using 1-bit SAs. To address the 

significant power overhead of multi-bit ADCs in 

conventional CIM accelerators, 1-bit SA-based BNN CIM 

accelerators have been proposed. However, two major 

challenges, limitations in BNN layer sizes and the SA 
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Fig. 8. The inference accuracies of baseline model (SW) and prototype 

chip (CIM) for 10k MNIST test images. 

98.02%
97.81%

 
Fig. 9. The energy per conversion of 128 5-bit ADCs [8] and 128 1-bit 

SAs (this work). 
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random noise, hinder the mapping of BNNs onto the CIM 

accelerators. To overcome these issues, we utilize two key 

techniques: neural network splitting and SA output 

probability modeling. The neural network splitting 

restructures BNN layers into sub-blocks matching the size of 

the CIM macro, enabling compatibility with hardware 

constraints while maintaining baseline-level accuracy 

through retraining. Additionally, SA output probabilities are 

measured and modeled, and this model is incorporated into 

the BNN to recover the accuracy drop caused by the SA 

random noise. A prototype CIM accelerator fabricated in 

28nm CMOS technology demonstrates our framework, 

achieving 97.81% inference accuracy on the MNIST test 

dataset and 12.6x reduction in readout energy compared to 

the prior work. 
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