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Abstract - For academic research purposes, ARM provided 
the Cortex SoC platforms. This study presents the methods and 
results of implementing the Cortex-M0 as a chip. The 
behavioral memory was replaced with the Samsung memory, 
and the design was modified to allow software to be written 
externally to the chip at any time. Efforts were made to fully 
utilize as many EDA tools as possible during the chip 
implementation to maximize the chip's functionality and 
performance. The fabricated Cortex-M0 chip was mounted on 
a test board and was verified to work well in conjunction with 
the software. A hierarchical approach was adopted during the 
chip implementation, with efforts made to minimize its size and 
facilitate its use as a platform. In this study, the Samsung 28nm 
LPP process was applied. 
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I. INTRODUCTION  

The most convenient opportunity for participating in chip 
design at Korean universities is the IC Design Education 
Center (IDEC) MPW program. This is because participants 
can receive financial support for participating in overseas 
processes, and in the case of domestic processes, they can 
receive fast and accurate technical support. Through the 
process of implementing university ideas into chips, students 
can gain practical experience, generate research results 
through chip measurements and demos, and even achieve 
research accomplishments. Currently, many Korean 
professors are participating in the IDEC MPW program, but 
looking at the distribution, the digital field is very marginal. 
Analog and mixed fields account for more than 90% of the 
ratio, while digital design shows about 10%. There may be 
various reasons for this situation, but the absence of 
platforms is also a contributing factor.  

A platform can be compared to a large building made of 
assembly blocks. If some people build a sturdy and large 
building, they can create connecting bridges with other 
buildings or stack floors higher. This means good scalability. 
Having a verified platform enables the attachment of 
independent function units or IP blocks and confirming the 

independent function verification and integration with the 
entire system, which is very useful for SoC configuration. 
Design companies in the SoC field have various platforms 
including ARM, allowing them to create larger systems by 
integrating various IPs through verification. However, there 
are budget and manpower issues in most universities, so it is 
difficult to create the qualified modules or IPs. Furthermore, 
even if someone provides a platform to the university, it is 
difficult to actively adopt if it is not widely known or widely 
used, as graduates would need to learn new skills after 
entering a job. 

In this regard, the fact that ARM provides ARM 
processors and SoC platforms to professors and researchers 
at universities free of charge is very welcome news. Upon 
following the guidance of ARM personnel, after joining the 
ARM Developer site and going through the NDA procedure, 
it is possible to download SoCs including ARM Cortex A, R, 
M series as well as AMBA buses and peripheral controllers. 
There are various types of systems, including sources 
modeling ARM-made FPGA boards and providing FPGA 
images, making it easy for newcomers to use ARM SoC 
platforms. Not only hardware source code but also software 
support is provided. Keil compiler, arm-linux-gcc, ARM 
Development Studio, and various basic examples are 
provided for free. Moreover, if there is a Debug Access Point 
on the ARM Core, debugging is possible by setting break 
points through software development tools. ARM also 
provides lecture slides, online lectures, user guide 
documents, professional books on ARM Core, and practical 
examples, making it virtually comprehensive [1]. Now, 
what's important next is documents like "How to implement 
on Semiconductor" from a user perspective. This paper 
covers ARM Cortex-M0 based SoC platforms and discusses 
what needs to be considered when implementing them into 
chips. 

II. CONSIDERATION FOR SOC IMPLEMENTATION   

A. Hardware and Software Description of ARM Cortex-M0 

The ARM Cortex-M0 is the first CPU Core in the Micro 
Controller series of Cortex, operating at a 50MHz clock 
speed on TSMC 180nm process, including CPU core, 
AMBA bus AHB Lite, and APB bus. It also includes memory 
interfaces and multiple AHB, APB slaves like GPIO, timer, 
Watchdog timer, UART Controller, etc. All components are 
written in Verilog Language, allowing them to be opened 
with text editors like vim. Inside the source code, there are 
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parameters in defines.v, allowing for flexible settings. The 
Fig. 1 shows the architecture of Cortex-M0. 

 

 
Fig. 1. Hardware Structure of ARM Cortex-M0 SoC. 

 
The software development environment is operable on 

both Windows and Linux. For Linux, the arm-linux-gcc 
compiler is provided, and for Windows, ARM Development 
Studio tool and Keil microvision are provided [2]. When the 
ARM Cortex-M0 integration package is uncompressed, 
basic software examples are visible. In this study, 
microvision and the essential pack were installed before 
compiling the examples provided as defaults. Examples such 
as hello, uart, interrupt, timer, watchdog timer, etc., are 
diverse, allowing the designer to operate the SoC as desired. 

 

  
Fig. 2. Software Environment for ARM Cortex-M0 SoC. 

 
 
Fig. 2 shows the GUI of the microvision, which is the 

software development tool in this study. If the hex file 
generated by compilation is opened, it can be observed that 
each line contains two numbers as hex code. For SoC 
verification, it is important to integrate this hex file with the 
hardware to verify its operation. Inside the package, there is 
a Testbench, and clkreset.v describes the operation of clock 
and reset, allowing verification using a Verilog simulator. In 
this study, Synopsys VCS and Verdi were used, as shown in 
Fig. 3, demonstrating the situation where Cortex-M0 
operates with software [2]. The normal operation messages 
of Cortex-M0 are visible, and the time taken in nanoseconds 

can also be verified. This study focuses not on the internal 
issues of the CPU such as the ISA and pipeline configuration 
of Cortex-M0 but rather on verifying Cortex-M0 and 
implementing it into silicon following the Digital Flow. 

 

 
Fig. 3. Hardware and Software operation of ARM Cortex-M0 SoC. 

 
B. Change from Behavioral memories to Macro Memories 
for implementing SoC 
 

The first issue to consider when implementing the SoC 
platform into hardware is memory. Inside the enclosed 
package are 64KB sized RAM and ROM in behavioral 
model format. Both memories contain [13:0] reg [31:0], and 
simulation can be conducted by specifying the location of 
the compiled hex file through the readmemh() syntax in the 
initial section. However, these RAM and ROM models are 
not suitable for hardware implementation. Generating two-
dimensional regs during FPGA implementation consumes a 
lot of compilation time, occupies a large amount of device 
capacity, and lacks consideration for delays, making it 
impossible to ensure proper operation. As an alternative, 
macro blocks within the FPGA must be used. Running 
Megawizard or IP Generator to create memory requires 
careful verification of the device specs to prepare the FPGA 
board since two 64KB memories need to be created. If a 
suitable board is not available, utilizing external memory on 
the FPGA board is also an option. Becoming familiar with 
the datasheet of DDR or DRAM and implementing the 
controller as RTL source code or obtaining appropriate IPs 
is essential. If implementing with chips instead of FPGA, a 
chip designer should use the memory provided by the 
foundry. Each foundry has its own supported memory 
compiler, and if it offers SRAM, it is suitable for use with 
Cortex-M0. In this study, Samsung foundry was utilized, 
which provides memory compilers supporting various sizes, 
thus enabling the creation of a 64KB macro. 
 
C. Change ROM Area with SRAM for implementing SoC 

The second issue to consider in SoC implementation is the 
use of ROM. Filling ROM involves software compiled into 
hex or binary files. Since software code needs numerous 
debugging and modifications before completion, using 
ROM from the initial project stage greatly increases the 
likelihood of chip malfunction due to software bugs. 
Ultimately, reconfigurable EEPROM or rewritable flash 
appears to be a better option than ROM. However, the 
Samsung foundry available for domestic universities in 
Korea only provides SRAM, ROM, and register file. 
Therefore, in this study, ROM is replaced with SRAM, and 
ROM code is proposed to be rewritten externally via UART 
communication. To facilitate this, PCB boards are 
configured to accommodate USB-to-serial chips for 
connecting to the PC via USB cable when UART channels 
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are available on the packaged chip's pins. The SRAM is 
programmed by creating a hex file using the microvision tool 
on a PC and transferring it to the ROM area of the SoC via 
the HyperTerminal program. To ensure smooth progress in 
this process, the design of a module capable of controlling 
the transmission of hex files from start to finish is necessary. 
This module is responsible for controlling SRAM, UART 
controller, and data flow. 

The description of the first control is about SRAM, among 
the three, as follows. When generating SRAM with a 
memory compiler, documentation for that memory is usually 
produced, allowing confirmation of basic memory 
operations. However, the methods for controlling continuous 
read and write operations are often not specified. Therefore, 
designers need to conduct extensive simulations based on 
basic information about reads and writes to avoid errors in 
memory control.  

The second control is about UART. Since hex codes will 
be transmitted between the PC and the board via UART cable 
and HyperTerminal, the communication speed and flow 
control need to be determined in advance. Designers must 
choose an appropriate baudrate from those supported by the 
HyperTerminal program, and once the speed is determined, 
the values of UART control registers need to be adjusted to 
match the clock speed received by the UART controller. 
Additionally, various simulations are required for flow 
control, parity bits, interrupt handling, and other factors. 

The third is about data flow control. Since the ROM code 
to be stored in the on-chip SRAM via UART communication 
is a continuous stream of long strings, it needs to be received 
and stored in SRAM in predetermined sizes. Additionally, 
when the UART operates, the SRAM on the other side must 
wait, so a module design that can sequentially control the 
flow of data is necessary. First, when examining the hex 
code, each line consists of two hex codes, such as 2F and 8A. 
Since UART communicates in ASCII code, if 2 is sent first 
from 2F, it must be converted to 0x52 before sending. Within 
the on-chip system, when 0x52 is received via UART 
communication, it must be restored to 2, temporarily stored, 
and then wait for the next value, F, to form 2F. This process 
must be repeated four times to receive a line, 32-bit, and then 
it needs to be written. Since Cortex-M0 is a 32-bit processor, 
it needs to write to memory in 32-bit word units. It is also 
important to note that ARM Cortex-M0 uses Little Endian 
mechanism, so the received codes need to be correctly 
shifted and stored. Taking all these into account, once a 32-
bit word is formed, the UART transmission pauses, and it is 
written to the on-chip SRAM. After that, during the 
reception of the next 1-word via UART communication, the 
chip select of the on-chip SRAM should be disabled, and the 
address should be incremented by 1. 

So far, the need for three controls has been explained. In 
this study, a module implementing all the described 
operations was named FIFO, and it was designed to perform 
sequential operations using FSM. The FIFO operates with a 
50MHz clock, along with the UART controller and memory. 
The implemented FIFO module can write and read to/from 
the on-chip SRAM and also transmit and receive messages 
via UART. Instruction codes can be written to the on-chip 
SRAM and read back for inspection by the designer. 

Fundamentally, the transmission of hex codes should occur 
before the CPU operates, so while the FIFO module is 
operating, the Cortex-M0 SoC is reset and the main clock is 
gated to minimize unnecessary power consumption. Once 
the FIFO operation is completed, the clock entering the FIFO 
is gated, the clock entering the Cortex-M0 SoC is restored, 
and the reset is released. Since the hex codes are properly 
written into the on-chip SRAM, the channel with FIFO is 
disabled, and the channel with the Cortex-M0 is enabled. 
Through Fig. 4, the connection of FIFO, UART, and memory 
can be observed, and through Fig. 5, the proper operation of 
the FIFO can be confirmed by displaying messages on the 
terminal. 

 

 
Fig. 4. Proposed SoC including SRAM, FIFO and UART. 

 

 
Fig. 5. Co-operation of SRAM, FIFO and UART. 

 
D. Timing Consideration between Core and Memories 

The third issue to consider is the timing structure between 
the CPU, AMBA bus, and memory. Fig. 6(a) illustrates the 
Cortex-M0 CPU, which acts as the master connected to the 
AHB bus, and the AHB_ROM, which serves as the slave. 
The timing diagram shown in the upper part of Fig. 6(b) 
represents the operation of the enclosed Cortex-M0 SoC 
package. This package contains behavioral memory within 
the AHB_ROM module, designed for simulation purposes 
but not suitable for hardware implementation. One of its key 
characteristics is that it performs read and write operations 
without delay, allowing operations that typically require two 
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cycles to be executed in one. In the upper part of Fig. 6(b), 
at time T0, right after the reset, the Cortex-M0 CPU sends 
an instruction fetch request by issuing the initial address. 
Simultaneously, the address is assigned to HADDR and 
reaches the AHB_ROM. At time T1, the AHB_ROM module 
decodes the AMBA signals and decides to assert a read 
signal to the behavioral memory. The address and read signal 
are expected to be delivered to the memory by T2. However, 
since the behavioral memory operates immediately, it 
outputs the code instruction at time T1, allowing the Cortex-
M0 CPU to receive the code at time T2. 

In this study, the goal is to replace the behavioral memory 
with Samsung's 28nm memory while ensuring that the 
Cortex-M0 CPU receives the requested instruction at time 
T2, as it did with the behavioral memory. Since Samsung 
memory is not a behavioral memory, it operates by receiving 
address values and read control signals at time T2, and the 
problem is that the Cortex-M0 CPU receives the instruction 
code at time T3. The solution, which can be seen at the 
bottom of Fig. 6-b, is to perform the tasks performed at time 
T1 in advance. The logic that sets the address value and 
control signal value within the AHB_ROM module is made 
to operate as a negative clock. Setting the address value and 
control signal value in advance before T1 helps resolve setup 
timing violation, making chip implementation easier. 

 

 
(a) 
 

 
(b) 

Fig. 6 (a) AHB AMBA BUS Architecture and (b) Operation with Behavioral 
and Samsung On-Chip Memory. 

 

E. Hierarchical Design 

The fourth issue to consider in SoC implementation of 
Cortex-M0 is Hierarchical Design. It is not common to 
implement the entire SoC Design in a flattened manner. 
Typically, SoC Design is divided into small block units, and 
implementation is carried out in parallel by teams of many 
people. Experienced designers will consider Front-End 
implementation in terms of constraints and scenarios, and 
they will think about strategies for Back-End 
implementation that make it easy to implement in terms of 
block shape, size, and pin placement. Additionally, they will 
consider how to verify at the higher level, which will include 
timing, power, functionality, DRC and LVS. For example, at 
the Front-End stage, when constraints are being designed at 
the Top Design level, consideration needs to be given as to 
whether constraints for timing, including clocks, should be 
applied to sub-modules. If there are PLLs in the system or if 
there are different types and operating cycles of clocks that 
need to be applied to each sub-module due to Half CLK, then 
constraints will need to be written and implemented 
individually for each case. At the Back-End stage, it will be 
necessary to determine the direction of pins considering the 
size and position of small blocks and their connectivity so 
that routing can proceed in the shortest distance when 
implemented. Additionally, from a functional scenario 
perspective, if there are specific periods where small blocks 
do not need to operate, gating the CLK entering those blocks 
or gating the power to reduce power consumption can also 
be considered. Hierarchical Design is advantageous because 
if a specific block needs to be modified, only that design 
needs to be modified, rather than having to re-implement the 
entire system as with the flattened approach. In this study, 
the Cortex-M0 Core was pre-implemented up to the Front-
End stage, and the on-chip RAM and ROM were pre-
implemented up to the Back-End stage before being utilized 
in the overall SoC implementation. Since memory occupies 
the most area in the Floorplan in Cortex-M0 SoC 
implementation, it was progressed to the Back-End, and the 
Core, which needs to operate with the highest CLK, was 
separately synthesized to prepare mapped ddc for overall 
integration. What needs to be checked in advance is that 
there is a block inside the Cortex-M0 core that is composed 
of nets, so it is not easy to read and is impossible to modify. 
However, because this part is implemented with a 
considerable length of combination logic, a significant 
amount of time and effort is required to ensure there are no 
setup timing violations after synthesis. Excluding the Core 
from the overall design, there are no significant difficulties 
in implementation, making it advantageous to pre-
implement only the Cortex-M0 core for SoC 
implementation. Another part where Hierarchical Design is 
needed is with memory. Fig. 7 shows a notable example of 
the results of auto-routing on the pins of the memory. In 
situations where 1'b1 or 1'b0 are commonly assigned, 
routing is first connected to a specific pin in the memory, and 
when connected to the next pin, it is carried out in the inner 
area of the memory. Another similar case is where clock nets 
are well connected to the CLK pin of the memory but the 
clock shield nets are going to the inside of memory. These 
occurrences causing errors stem from using the memory as a 
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phantom cell in the Auto PnR stage, a characteristic of the 
files provided by the foundry to designers, leaving designers 
with no choice but to verify them directly. In this study, a 
memory wrapper was created by instantiating SRAM and 
connecting the input and output pins externally. With no 
special functions, only wire connections were used to ensure 
that there is no impact on the functionality and timing of the 
memory, and to address the issues described above during 
Auto PnR. If the Auto Router makes mistakes, the 
problematic patterns are manually moved out to allow metal 
and VIA to be positioned outside the memory. The memory 
wrapper, completed up to the Back-End stage, was applied 
commonly to both ROM and RAM. 

 

 
Fig. 7. Fatal Result of Auto PnR toward memory. 

 
III. IMPLEMENTATION FROM RTL TO GDS   

 
In this study, a system is implemented on a chip by 

attaching a FIFO and UART controller to the basic ARM 
Cortex-M0 system. Samsung 28nm LPP process was 
utilized, and using the memory compiler provided by the 
foundry, a synchronous SRAM with a size of 16384X32 bits 
was created. This memory is used commonly as both ROM 
and RAM. The memory is configured to operate on the 
falling edge, and the SRAM used in the ROM area had most 
of its pins directly connected to the AHB bus and Cortex-M0 
CPU core, while it was shared with the FIFO & UART for 
interface. The operational scenario is as follows. First, 
prepare the instruction code and then transmit it from the PC 
to the on-chip area using the HyperTerminal program. The 
code entering the on-chip area via UART communication is 
stored in the SRAM replacing ROM through the FIFO. Until 
the write process is completed, the entire system, including 
the CPU, remains in a reset state and the main clock is gated, 
waiting for the write to finish. Once the write is complete, 
the clock going to the FIFO and UART is gated in the 
opposite direction, booting up the main system. Verifying the 
normal operation of the SoC system involves checking 
messages through the UART communication port directed to 
the outside of the chip. In this study, the SoC system 
operating in the sequence described above was implemented 
from RTL to GDS, and ultimately, it was implemented as a 
Hard Macro form after being reduced to a small area for use 
as an SoC platform. The process used for implementation is 
Samsung 28nm LPP process, which has the following 
characteristics: standard cells can operate in the GHz range, 
IO cells include ESD functionality, supporting input-output 
bi-directional operation, and signals up to 200MHz, and up 
to 160 IO cells and pad cells can be used on an area of 4x4 
mm. Memory includes ROM and various types of SRAM 

and register files, providing support for various sizes. The 
package proceeded with the LQFP 208 type, and the design 
using EDA tools could be conducted within a cloud server 
with IDEC support. Synopsys tools were used for 
implementation up to the Second Sign-off, and for tasks like 
merging, Physical DRC and LVS, Cadence and Siemens 
EDA tools were utilized using the final GDS file. All licenses 
were obtained through IDEC. Opportunities in Samsung 
28nm process were accessible through the IDEC MPW 
program, and comprehensive technical support throughout 
the design period was provided by IDEC engineers.  

 
A. Function simulation 

The tool for function simulation is Synopsys VCS and 
Verdi tool. Fig. 8 shows the initial operation status of the 
SoC. The FIFO displays messages through the UART 
module and prompts the user to press numbers 1-4. Option 1 
stores the compiled hex file in the ROM area of the SoC. 
Option 2, after saving the hex file, displays the instruction 
code stored at the specified address. Option 3 reads the entire 
instruction code stored in the ROM area of the SoC and 
transmits it through the UART channel. It can be read by the 
HyperTerminal program on the PC and saved as a file, 
allowing comparison with the original Hex code to assess the 
write and read operation of the FIFO and memory. If there 
are no abnormalities in options 1-3, option 4 boots the 
Cortex-M0 system. Option 4 releases the reset on the Cortex-
M0, Amba bus, and peripherals, and enables CLK normally 
to verify the overall operation of the SoC system, while 
disconnecting the CLK to the FIFO and UART to reduce 
power consumption. Fig. 9 shows the messages during the 
operation of option 4 and the normal operation of Cortex-M0 
and Fig. 10 shows the output of the Gated CLK at the time. 

The CLK period for simulation was set to 5ns. These 
conditions were described in constraints and applied to the 
synthesis stage. 

 

 
Fig. 8. Storing ROM code to on-chip SRAM. 

 

 
Fig. 9. Normal operation of Cortex-M0. 
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Fig. 10. The result of gated clock of Cortex-M0. 

 
 

B. Synthesis 

The tool for synthesis is Synopsys Design Compiler [4]. 
According to the process guide from Samsung, 80% of the 
clock period is applied when performing topographical 
synthesis. Because the maximum available frequency of the 
IO cell provided by Samsung's 28nm process is 200 MHz, 
5ns was set as the target and 4ns was applied as a constraint. 
The maximum synthesizable clock frequency is also 4ns. 

Synthesis of the Cortex-M0 Core and extraction of the 
DDC were performed in advance and the entire 
implementation of the memory wrapper is completed and 
both DDC and NDM were extracted. Therefore, during the 
synthesis of the TOP design’s Hierarchical Design, pre-
created DDCs were used as is, and all Verilog source codes 
for the remaining modules were read and synthesized at 
once. For this purpose, the set_dont_touch command is 
applied to the pre-created modules. After synthesis, the 
remove_design command is used to remove the mapped 
DDC and gate-level netlist of the Cortex-M0 and the 
memory wrapper from the entire design. The resulting black 
box is replaced with the pre-created NDM during the Auto 
PNR stage using ICC2. 

When synthesizing using the Samsung 28nm LPP process, 
it is characteristic to operate in Topographical mode, 
select .lib with the option to use the Composite Current 
Source (CCS) model, and apply Multi Corner Multi Mode 
(MCMM), and On Chip Variation (OCV). The tool operation 
proceeds with the command `dc_shell -topo`, and setup 
includes recognizing .tf, .tluplus, .map files, etc. The process 
for selecting operating conditions is shown in Fig. 11. Create 
a table and organize the features. Rows for 10% higher and 
lower voltages than the reference voltage of 1.1V are 
created, and columns for operating temperatures ranging 
from -40°C to 125°C are made. Then, after fixing the 
temperatures at -40°C and 125°C, the highest voltage at -
40°C and the lowest voltage at 125°C are selected to define 
two operating PVT conditions. It is advantageous for SoC 
implementation to apply the same criteria for selecting .lib 
for STD Cell, IO Cell, and Memory. If Temperature 
Inversion (TIV) operating conditions must be selected, then 
choices completely opposite to the above conditions should 
be chosen. Also, referring to the Samsung 28nm process 
guide document, if some corners are marked as Dominant, 
the designer should choose and adopt [4].  

 
 

 
 

Fig. 11. Operating conditions for synthesis. 

 

 
Fig. 12. Scenarios setup for synthesis. 

 
Fig. 12 shows the results of selecting operating conditions 

for STD, IO, and Memory. In this study, two scenarios were 
created: one composed of Function Mode and the worst 
corner, and the other composed of Function Mode and the 
best corner. On-Chip Variation was also applied, with derate 
values set to 1.036 and 0.964 respectively, to implement a 
more pessimistic design. Fig. 13 shows the results of the 
report_scenarios command, highlighting the confirmed 
derate values.  

 

 
Fig. 13. Details of a scenario. 

 
 Fig. 14 shows the result of synthesis and mapped design. 

The synthesized design has no constraint errors and setup 
timing errors.    

 
Fig. 14. Mapped design after Synthesis. 
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C. Pre-Layout Equivalence Check & STA 

The tools for equivalence check and STA are Synopsys 
Formality and Primetime [5][6]. Figs. 15 and 16 show the 
results of Formality and Primetime execution.  

In the stage of equivalence check, the verilog sources and 
the ddc files of the pre-implemented Cortex-M0 core and the 
memory_wrapper are read as references, and matching and 
verification are carried out after reading the mapped.ddc file 
as an implementation. 

In the stage of STA, there are no errors in setup and 
recovery. Therefore, an SDF was extracted to proceed with 
Pre-layout Simulation. 

 

 
Fig. 15. Results of Equivalence Check. 

 

 
Fig. 16. Results of Pre-layout STA. 

 
 

D. Pre-Layout Simulation & Power Estimation 

The tools for simulation and power estimation are 
Synopsys VCS, Verdi and PrimePower [7]. 

Fig. 17 shows the results of Pre-layout Simulation. The 
result is identical to the functional simulation result and it 
can be observed that the system operates normally even with 
the annotation of sdf files incorporating cell delays.  

 

 
Fig. 17. Results of Pre-layout Simulation. 

 
Using the `fsdb2saif` command, a saif file with only 

transition data in text format was generated and fed into the 
PrimePower tool for power estimation. Fig. 18 shows the 
contents of saif file and Fig. 19 shows the power 
consumption of standard cells, IO cells, and Memory. It is 
the result of average voltage estimation. 

 
 
 

 

 
Fig. 18. Contents of the extracted saif file. 

 

 
Fig. 19. Result of Power Estimation. 

 
E. Auto PnR 

 
The tool for Auto PnR is Synopsys ICC2 [8].  
The process used in this study is the Samsung 28nm LPP 

process. Since the foundry provides the standard cell, IO 
cell, and memory in LEF format, they were converted to 
NDM format for ICC2 work before proceeding with PnR 
[3][8]. When MPW is conducted through IDEC, a size of 
4000x4000um can be used, and 160 IO cells can be utilized. 
Therefore, in this study, while implementing the Cortex-M0 
SoC, IO cells were used and the core area was minimized 
using a hierarchical design approach.  

First, the pre-made NDM file of the memory wrapper 
module was reused for the hierarchical design. As shown in 
Fig. 20, since the area of the memory is the largest, the 
memory pins were symmetrically placed facing each other, 
and the floorplan was designed to accommodate most of the 
standard cells between the memories [9]. The ICC2 tool 
execution and the scripts used for the design implementation 
in this study were referenced from the Reference 
Methodology (RM) provided by the Synopsys SolvNet site 
[10]. This script set can be executed using the make method 
and is composed of detailed steps shown in Figure 21. At 
each step, verification of timing, power/ground connectivity, 
DRC, and LVS was conducted. 

Fig. 22 shows the results of the auto PNR from this study. 
If the platformization is implemented, the left side of the chip 
could be used as a hard macro, and the right side of the chip 
could be designed differently. 
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Fig. 20. Floorplan and Powerplan of Cortex-M0 SoC. 

 
 

 
Fig. 21. Internal steps of Auto PnR and Verification Command. 

 

 
Fig. 22. Full Chip Implementation. 

 
F. Post-layout Equivalence Check and Parasitic Extraction 

 
The tool used for Equivalence Check is Formality, and for 

Parasitic Extraction, Synopsys StarRCXT was utilized [11].  
When using the Formality tool, the gate-level netlist after 

synthesis is designated as the reference, and the gate-level 
netlist after Auto PNR is set as the implementation, and then 
the process is carried out. The RM for ICC2 can be 

conducted using the make method, with the Makefile 
containing an item for fm, which enables execution of the 
process with the make fm command. Although there is no 
GUI, the Equivalence Check can be completed by 
confirming the SUCCEED message. 

For StarRCXT, the location of the AutoPNR working 
folder and the design name are provided, along with the PVT 
conditions for extracting the parasitic RC. In this study, two 
scenarios were applied for AutoPNR. Since there are two 
PVT conditions, two separate folders were prepared to run 
StarRCXT, extracting spef files for the best operating 
condition and the worst operating condition, respectively. 
Figure 23 shows the results of the post-layout equivalence 
check and Figure 24 shows the contents of spef which results 
of the parasitic extraction. 
  

 
Fig. 23. Result of the Post-layout Equivalence Check. 

 

 
Fig. 24. Contents of the SPEF file which results of Parasitic Extraction.  

 
 

G. Post-layout STA and ECO 

The tool used for Static Timing Analysis (STA) was 
Synopsys PrimeTime. 

To perform post-layout STA, the design, SDC, and SPEF 
files are required. Since the SDC and SPEF files were 
extracted based on different operating conditions, separate 
folders were created for each scenario, and STA was 
performed in both folders. An important point is that even if 
no setup or hold violations were detected in the AutoPNR 
tool, such violations might still be found in PrimeTime. 

If a hold violation is detected during this process, it is 
crucial to output an ECO file that can insert buffer cells using 
commands like insert_buffer, which is an ICC2-type 
command. In this study, hold violations were found in both 
STA folders, leading to the generation of two 
eco_changes.tcl files. After this, the AutoPNR environment 
was revisited to apply the ECO to the cells where route 
optimization had been completed. 

After applying the ECO, equivalence check and parasitic 
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extraction need to be repeated, followed by another round of 
STA. It's important to note that this process may not be 
completed in one iteration, and excessive buffer insertion to 
resolve hold violations could result in setup time violations, 
requiring careful attention. 

The final results of the post-layout STA are shown in 
Figure 25. In this study, since two scenarios were used, both 
results had to be satisfied. 

 

 
Fig. 25. Result of 2nd sign off STA. 

 

H. Post-layout Simulation and Power Estimation 

The tools for simulation and power estimation are 
Synopsys VCS, Verdi and PrimePower. 

The same testbench is used for function simulation, pre-
layout simulation, and post-layout simulation. When the 
same test scenario is applied, the results should be identical 
across all simulations. For pre-layout simulation and the 
post-layout simulation, Standard Delay Format (SDF) 
annotation is required, which results in the annotation of cell 
and net delays for each signal. This can be observed when 
comparing the simulation waveforms, where delays are 
applied in the post-layout simulation compared to the 
function simulation. 

Although delays are annotated, the design should function 
correctly without issues because it has passed STA. 

Fig. 26 shows the results of the post-layout simulation of 
2 scenarios, and Fig. 27 illustrates the synchronization 
between the function simulation and post-layout simulation, 
displaying how cell delay and net delay are applied at the 
same timing. 

 

 
Fig. 26. Messages of the post-layout simulation. 

Fig. 28 shows the results of power estimation, which 
represent average voltage estimates. 

 

 
Fig. 27. Delays between function and post-layout simulation. 

 

 
Fig. 28. Power consumption of 2 scenarios.  

 
I. Merge and Physical DRC, LVS 

The merge process involves replacing digital cells, which 
were previously worked on as phantom cells, with digital 
cells that possess real patterns. The detailed procedure is as 
follows:  

After extracting the final design from ICC2 into a GDS 
file, it is streamed into Cadence Virtuoso tool. A Cadence 
library will be created during this process, into which the 
GDS files provided by the foundry are sequentially 
streamed in. Cells with the same names as the phantom 
cells will be overwritten with the real GDS file.  

Once the standard cells, IO cells, and memory cells have 
been sequentially streamed in, the layout shows a design 
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where all the actual patterns can be verified. Following this, 
the OUTLINE and a team logo are added, and Physical DRC 
and LVS are performed. According to the rules provided by 
the foundry, Siemens Calibre is used. After the merge, 
various DRC errors, including antenna errors, may appear. 
Depending on the situation, these errors might need to be 
manually corrected through layout work. If there are too 
many errors, it may be necessary to return to ICC2 for further 
adjustments. It is important to be cautious during DRC 
corrections, as failing LVS could occur if the original 
patterns are not maintained. Figure 29 shows the result after 
merging performed by the Cadence Virtuoso tool [12].  

 

 
Fig. 29. The final design results of Physical DRC, LVS. 

 

 
Fig. 30. The physical result of DRC. 

 

 
Fig. 31. The physical result of LVS. 

Figs. 30 and 31 shows the final DRC and LVS results 
obtained using the Siemens Calibre [13]. The DRC results 
show errors that occur within the memory provided by the 
foundry and errors arising from the insertion of the team 
logo. Since these have been confirmed by the Samsung 
foundry, they were waived. 

 
Ⅳ. RESULTS AND DISCUSSIONS 

 
Fig. 32 shows the fabricated chip, which was packaged in 

an LQFP 208-pin package. It was mounted on a pre-designed 
test board with a socket, and power and signal connections 
were made before linking it to the measurement equipment. 
Various software codes were written to the ROM area via a 
UART cable. Fig. 33 shows the packaged chip and the test 
board and Fig. 34 shows the results of the cooperation with 
the software.  

 

 
Fig. 32. The fabricated chip. 

 

 
Fig. 33. The packaged chip and the test board. 

 

 
Fig. 34. The messages of co-working the software and the chip. 
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The specifications and results of this study are 
summarized in the following table. 

 
TABLE I. The specifications and the results of this study 

Parameters This Work 
Process Samsung 28 LPP process 

Main clock period 4ns 
On chip memory SRAM 16384x32 

Core Area 600x800 um 

Power Consumption Averaged 6.55 mW 
(Includes leakage 0.6 mW) 

Tool  

Synopsys 

VCS, VERDI, Library Compiler, 
Design Compiler, Formality, 

PrimeTime, ICC2, StarRCXT, 
PrimePower 

Cadence Virtuoso 

Siemens Calibre 
Samsung MemoryCompiler 

 
Ⅴ . CONCLUSION  

The implementation of the Cortex-M0 in this study was 
aimed at achieving the following objectives. 

- Replace the behavioral model-based memory with 
the foundry's memory. 

- Convert the ROM area into RAM and create a UART 
channel to enable software code to be written from a 
PC at any time. 

- Although the Cortex-M0 provided by ARM targeted 
TSMC's 180nm process, implement a faster SoC 
using Samsung's 28nm process. 

- Mount the implemented Cortex-M0 chip on a test 
board and demonstrate it along with the software. 

- Implement the chip using as many tools as possible, 
following the guidelines provided by IDEC. 

This study presents the above content with numerous 
figures. By implementing a chip using all the available 
tools, as demonstrated in this research, it is ensured that the 
chip will operate properly. It is hoped that all designers 
who read this paper will manage their schedules effectively, 
produce well-functioning chips, and achieve significant 
success in chip testing. 

Through this study, the basic SoC has been verified and 
its operation confirmed. For future research, it would be 
appropriate to propose methods for easily integrating 
analog and digital IPs to facilitate platform development 
and to suggest ways to simplify the creation of device 
drivers within the software development environment. 
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