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Abstract - This paper proposes a differential current mirror 
circuit with built-in dark current cancellation for photodiode 
applications. The photodiode sensor, modeled with a diode and 
a parasitic capacitor, generates a current signal that is directed 
through two current mirrors. The signals from each current 
mirror are then differentially outputted. Thanks to the 
proposed differential current mirrors, the only high frequency 
signal current can be transferred to output port effectively. The 
proposed sensor interface ICs were implemented using the 
PDK of the DB Hitek process and achieved a dark current 
cancellation ratio of 40 dB at a reconfigurable frequency. 
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I. INTRODUCTION 

Photodiodes are among the most widely used sensors, 
capable of detecting various factors such as light intensity 
and radiation to generate charge-based current signals [1]. 
However, photodiodes generate current not only in response 
to incident photons but also in the absence of light, leading 
to a current that can degrade the accuracy of signal 
processing circuits. This phenomenon is known as dark 
current [2]. Eliminating dark current enhances sensor 
accuracy, simplifies signal processing, reduces power 
consumption, and extends the operational lifetime of the 
sensor signal processing system [3–4]. 

Traditional photodiode sensor signal processing systems 
typically consist of a photodiode, a transimpedance amplifier 
(TIA), and an analog-to-digital converter (ADC), as shown 
in Fig. 1 [5–7]. The photodiode converts incident photon 
particles into charge, which the TIA integrates to produce a 
voltage signal suitable for conversion by the ADC. Due to 
their operational characteristics, signals generated by 
photodiodes inherently include dark current. Since the TIA 
cannot distinguish between dark current and signal current, 
it must output peak voltage values for every event where 
current is generated.  
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Fig. 1. Conventional Photodiode Sensor Interface Circuits. 

II. DESIGN METHODOLOGY  

A. System Configuration 
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Fig. 2. Proposed Photodiode Dark Current Cancellation Circuit. 
 

Fig. 2 illustrates the configuration of the proposed 
photodiode dark current cancellation circuit. The current 
signal generated by the photodiode is split between two 
current mirrors. Unlike conventional connections where the 
gate and drain of the MOS transistors are directly connected 
with a wire, each current mirror in this design utilizes a pair 
of resistors Rf . Additionally, the left current mirror has a 
capacitor Cf connected in parallel with Rf . The photodiode 
generates the current signal, while the two current mirrors 
receive and convey the current signal to the output port Vout. 
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B. Key Concepts 
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Fig. 3 (a) Schematic of the traditional current mirror circuit, (b) Schematic 
of the traditional current mirror circuit with the parasitic capacitance of the 
photodiode added. 
 

The current mirror that receives the current signal 
generated by the photodiode should have low input 
impedance (Zin(s)) to minimize the loss of current signal 
transmission. The Zin(s) of the current mirror described in 
Fig. 3(a) can be expressed as follows: 
 

𝑍𝑍𝑖𝑖𝑖𝑖 =
𝑟𝑟𝑜𝑜

1 + 𝑔𝑔𝑚𝑚𝑟𝑟𝑜𝑜
≈

1
𝑔𝑔𝑚𝑚

 (1) 

 
The principle behind deriving the formula in (1) involves 
utilizing the fact that the gate and drain are connected by a 
feedback loop. The impedance of a circuit with feedback can 
be calculated by dividing the impedance of the circuit 
without feedback (ro) by the loop gain (1+T = 1+gmro). 
However, the Zin can be relatively increased due to the 
parasitic capacitance CP. CP can be modelled as a parasitic 
capacitance of sensor. In this work, CP is determined by a 
type of radiation sensor, the SiPM, with several nano Farad. 
As shown in Fig. 3(b), the increased high-frequency 
impedance reduces the signal current entering the current 
mirror, resulting in greater signal loss. 
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Fig. 4. Proposed low-loss current mirror (a) Detailed schematic, (b) Bode 
plot of the input impedance. 
 

To overcome the high-frequency impedance issue of the 
traditional current mirror in Fig. 3, we propose a low-Zin(s) 
at high-frequency current mirror as shown in Fig. 4(a). By 
connecting an Rf and a capacitor Cf between the gate and 
drain of the MOS transistor, the Zin(s) can be changed as 

follows: 
 

𝑍𝑍𝑖𝑖𝑖𝑖,1 =
1
𝑔𝑔𝑚𝑚

∙
1 + 𝑠𝑠𝑅𝑅𝑓𝑓𝐶𝐶𝑓𝑓

1 + 𝑠𝑠𝑅𝑅𝑓𝑓�𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑔𝑔�
 

(2) 

 

Fig. 4(b) shows a comparison of impedances (1) and (2) in 
the frequency domain using a Bode plot. The new pole 
created by the addition of Rf and Cf prevents impedance rise, 
minimizing the leakage of high-frequency current signals 
that could be absorbed by CP. To utilize the proposed current 
mirror in photodiode sensor signal processing circuits in Fig. 
2, we additionally use a current mirror with only the resistor 
Rf connected, without Cf. The Zin(s) of the current mirror 
without Cf can be rederived as follows: 
 

𝑍𝑍𝑖𝑖𝑖𝑖,2 =
1
𝑔𝑔𝑚𝑚

∙
1

1 + 𝑠𝑠𝑅𝑅𝑓𝑓𝐶𝐶𝑔𝑔
 (3) 
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Fig. 5. Conceptual diagram of the differential current mirror for removing 
photodiode dark current. 
 
 

Thus, the current signals generated by the photodiode 
sensor are injected into two different current mirrors and 
pass through an active load circuit composed of the PMOS 
transistors to output a single voltage signal. The current 
mirror with only Rf connected blocks high-frequency current 
signals and only passes low-frequency current signals. The 
low-frequency current signal, specifically the dark current, 
is removed at the output stage. Fig. 5 explains the principle 
of dark current removal. The final transfer function of the 
output voltage (Vout) for input current (ISense) can be 
calculated as follows: 
 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝐼𝐼𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆

= �
𝑍𝑍𝑖𝑖𝑖𝑖,2

𝑍𝑍𝑖𝑖𝑖𝑖,1 + 𝑍𝑍𝑖𝑖𝑖𝑖,2
−

𝑍𝑍𝑖𝑖𝑖𝑖,1

𝑍𝑍𝑖𝑖𝑖𝑖,1 + 𝑍𝑍𝑖𝑖𝑖𝑖,2
� 𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 

(4) 

 
Zout is the output impedance of the output node Vout.  
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III. RESULTS AND DISCUSSIONS 
 

 
Fig. 6. Schematic of proposed photodiode sensor interface ICs. 
 
 

 
 

Fig. 7. Bode plot of output voltage from input current source (Vout /ISense). 
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Fig. 8. Layout of proposed photo-diode sensor interface ICs. 
 

Fig. 6. displays the schematic design results of the circuit 
as described above. As the values of each component in Fig. 
6, 10 pF of Cf, 1 pF of Cg and 10 kΩ are used. All of the 
transistors are sized to satisfy the condition of 0.2 V Vd,sat. As 
shown in Fig. 7, the signal transfer function reaches a peak 
in the MHz range. If some current signal of photodiode is 
distributed over MHz, the gain of signal can be maximized. 
On the other hand, the low-frequency dark current signal can 
be filtered by the low gain over low frequency. The 
maximum ratio between dark current and signal current is 
simulated as 40 dB. The layout design of the proposed 
concept is shown in Fig. 8. The implemented circuit occupies 
an area of 0.13 mm2, but it can be changed for each 
application. 

 
IV. CONCLUSION 

 
This paper proposes an integrated circuit for photodiode 

sensor interface utilizing differential current mirrors. Thanks 
to the differential current mirrors, the dark current from the 
photodiode can be cancelled effectively. In addition, this 
design methodology can be applied to other applications that 
are sensitive to dark current. 
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