
IDEC Journal of Integrated Circuits and Systems, VOL 6, No.4, October 2020                                                             http://www.idec.or.kr 

 

Fully Integrated Ka-Band Power Amplifier with Parallel 

Power Combiner using Single-Winding Transformer 
 

 

Hyun Jjn Ahn1 and Ock Goo Leea  
 Department of Electrical Engineering, Pusan National University 

E-mail : 1hjahn@pusan.ac.kr 

 

 

Abstract – This paper presents a Ka-band linear CMOS 

power amplifier (PA) with a parallel power combiner using 

single-winding transformer to increase the output power with 

low loss in 65nm CMOS technology for fifth generation (5G) 

applications. Two differential cascode unit PAs are combined 

with the proposed parallel power combiner as a current 

combining topology. Compared with the conventional 

transformer power combining techniques, the proposed 

parallel power combiner can offer high output power with a 

compact die area.   

Upon simulation with a 28 GHz continuous-wave signal, the 

proposed PA achieves a saturated output power (PSAT) of 25.0 

dBm, output 1-dB compression power (PO,1dB) of 22.6 dBm, and 

peak power added efficiency (PAE) of 34.7%, respectively. A 

power gain of 28.1 dB is achieved with a 3 dB bandwidth of 5 

GHz. This PA achieves one of the highest figures-of-merit 

(FOM) among the recently reported 5G millimeter-wave (mm-

wave) PAs in CMOS. 
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I. INTRODUCTION 

The realization of 5G wireless communication in the mm-

wave band has become a highly significant to meet the 

increasing data traffic demands. Thus, integrated mm-wave 

transceivers have been studied intensively [1]-[21], [22]-

[24]. In the meantime, the transceivers using CMOS are the 

current trend for high-level integration. Among all the 

building blocks of on-chip CMOS mm-wave transceivers, 

the PA is the most critical block. Due to parasitic effect, lossy 

substrate and low breakdown voltage in advanced CMOS 

technology, delivering high output power and maintaining 

high efficiency are challenging in the design of CMOS PA. 

Several power combining techniques such as device 

stacking [1]-[3], on-chip transmission line power combining 

[4]-[8], and transformer power combining [9]-[21] have 

been used to achieve high output power in mm-wave band. 

 
(a)                          (b) 

 
Fig. 1. Structure of parallel power combiner based on an ideal model of a 

two-winding transformer, (b) proposed parallel power combiner based on 

an ideal model of a single-winding transformer 

 

Especially, transformer power combining techniques based 

on a two-winding transformer have been widely used for 

mm-wave CMOS PAs because they provide impedance 

transformation function along with the advantages of low 

loss and compact area. 

 To obtain high output power of PA in the mm-wave band, a 

parallel power combining topology based on a two-winding 

transformer has been widely used, as shown in Fig.1(a) [16]-

[21]. In this configuration, multiple of two-winding 

transformers can be combined through parallel connection. 

In comparison with a series power combining topology [11]-

[15], this topology is superior in obtaining symmetric 

structures and low imbalance performances between paths 

[20], [24]. 

 In general, to generate high output power in PA using an 

on-chip transformer, low input impedance of a transformer 

is required, because the output power generated from a 

device is inversely proportional to the input impedance of 

the transformer. However, the parallel combiner increases 

the input impedance; thus, it is difficult to generate high 

output power with a parallel power combiner using a two-

winding transformer, as shown in Fig.1(a).  

An autotransformer, a single-winding transformer, has 

also been introduced for on-chip PA designs [25]-[27].   
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. (a) Exemplary layout of the proposed power combining network. 

Simulated (b) insertion loss of proposed power combiner, (c) magnitude of 

ZOPT. 
  

Compared to a typical two-winding transformer, the input 

impedance of a single-winding transformer is lower if the 

same number of turns is used for the primary and secondary 

windings in both single-winding and two-winding 

transformers. In addition, a single-winding transformer can 

provide the advantage of passive efficiency with compact 

size and impedance transformation ratio [25]-[27]. Thus, it 

is a suitable candidate for the design of PAs using on-chip 

transformer to achieve high output power with high 

efficiency and compact size.  

In this paper, we propose a fully integrated Ka-band linear 

two-stage CMOS PA with a compact parallel power 

combiner using single-winding transformer to obtain high 

output power with high efficiency and compact design. 

The detailed structure of the proposed power combiner 

 
 

Fig. 3. Detailed schematic of the two-stage CMOS PA with parallel power 
combiner. 

 

and the circuit architectures of this PA are presented in 

Section II. Section III presents the post-layout simulation 

results of the proposed PA and a comparison of the proposed 

PA with the recent state-of-the-art Ka-band CMOS PAs. 

Finally, Section IV presents the conclusions of this work. 

 

II. DESIGN OF THE PROPOSED POWER COMBINER AND KA-

BAND POWER AMPLIFIER DESIGN 

A. Proposed parallel power combiner using single-winding 

transformer 

Fig.1 shows the equivalent ideal model for a parallel 

power combiner based on two types of transformers, for the 

single-ended case. As shown in Fig.1, the parallel power 

combiner with a two-winding transformer comprises two 

two-winding transformers arranged in a parallel 
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configuration, while the proposed parallel power combiner 

consists of two single-winding transformers, similar to the 

previous configuration. For structure of parallel power 

combiner using two-winding transformer, a unit amplifier, a 

PA, is connected to each primary winding of two-winding 

transformer, while a PA in proposed power combiner is 

connected to part of each winding in single-winding 

transformer, resulting in the configuration of 

autotransformer.  

For the two cases of parallel power combiner, each input 

impedance can be derived using equations (1) and (2) from 

the equivalent ideal model. 

𝑍𝑂𝑃𝑇_𝑇𝑤𝑜 = (
𝑛

𝑚
)
2

× 𝑅𝐿 × 2 (1) 

 

𝑍𝑂𝑃𝑇_𝑆𝑖𝑛𝑔𝑙𝑒 = (
𝑚

𝑚+𝑛
)
2

× 𝑅𝐿 × 2 (2) 

In equations (1) and (2), m is the number of primary 

winding turns, n is the number of secondary winding turns, 

and RL is typically 50 Ω. For mm-wave applications, one turn 

is typically used for the primary and secondary windings to 

achieve high quality factor. Thus, with the condition of one 

turn for each of the primary and secondary windings (m = n 

= 1) in Fig.1, the calculated input impedance of the two-

winding, ZOPT_Two, is 100 Ω, while ZOPT_Single is 25 Ω. Because 

a single-winding transformer provides lower impedance than 

a two-winding transformer when the same number of turns 

is applied, the proposed output combiner can generate high 

output power with low number of turns. In addition, the 

primary winding of the autotransformer includes as part of 

the secondary one, resulting in reducing the total series 

resistance [25]-[27]. Consequently, the PA implemented 

using the proposed parallel power combiner can achieve 

high output power and low insertion loss with compact size.  

Fig.2(a) shows an exemplary layout of the proposed 

parallel power combiner. The size of the layout is 182 μm × 

90 μm to achieve optimum power matching impedance. For 

the design of the parallel power combiner, a top metal layer 

is mainly used, and the inter-connections in the proposed 

combiner are implemented with the second top metal layer. 

Considering the DC current density on the metal, the metal 

width of the transformer is set as 8 μm. In addition, for the 

arrangement of the proposed combiner, vertical geometry is 

adopted to achieve a high magnetic coupling factor. In the 

initial design stage, to evaluate the performance of the 

proposed power combiner, electromagnetic (EM) 

simulations using both the HFSS and ADS momentum were 

performed. Because the EM simulated results from ADS 

momentum show a good agreement with those from HFSS 

at targeted frequency range, in the final design stage, EM 

simulations using ADS momentum were used considering 

the design complexity and iteration time. The simulated 

coupling factor is approximately 0.83 for the power 

combiner. The simulated insertion loss of proposed power 

combiner is −0.5 dB at 28 GHz, as shown in Fig.2(b). In 

other words, it proves that the proposed power combiner has 

low insertion loss with small die area. Fig.2(c) shows that 

the simulated magnitude of the load impedance, looking 

from PA, is approximately 25 Ω. Therefore, CMOS PAs 

using the proposed power combiner can achieve high power 

with high efficiency performance and compact die area. 

 
 

Fig. 4. Layout photograph of the proposed CMOS PA. 

 

 
 

Fig.5. Simulated small-signal S-parameters.  

 

 
 

Fig.6. Simulated stability factor. 
 

B. Design of Ka-band CMOS PA 

The detailed schematic diagram of the proposed CMOS 

PA with the proposed parallel power combiner is presented 

in Fig. 3. Furthermore, detailed design parameters are  

included in Fig. 3. For the PA design, a two-stage 

configuration (driver and power stages) is used to provide 

sufficient gain and power driving. For the design of the DA 

stage, the DA is adopted using a common-source (CS) 

topology with size (W/L = 2 × 83.2 μm /65 nm) for M5 and 

M6, which are biased at DA_VDD = 1.2 V. The PA is realized 

using a cascode topology with identical size (W/L = 2 × 

128 μm /65 nm) for M1, M2, M3, and M4, which are biased at  
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Fig.7. Simulated output power, gain and PAE versus input power at 

28GHz.  

 

 
Fig.8. Simulated current consumption of PA and DA stages. 

 

PA_VDD = 2.4 V.  

In addition, the PA utilizes neutralized capacitors (CN) to 

improve the power gain, reverse isolation, and stability. A 

two-way transformer-based series power divider is designed 

to generate two differential signals, two inter-stage  

transformers are used to drive the four unit PAs. The supply 

currents are fed into the differential unit. 
 

III. POST-LAYOUT SIMULATION RESULTS 

The proposed PA with a parallel power combiner is 

designed using a 65 nm CMOS technology. Fig.4 shows the 

photograph of the designed PA. The dimensions of the whole 

chip are 0.85 × 0.6 mm2, including the DC supply pad and 

input and output matching networks; additional off- 

chip matching elements are not required. The core 

integration area of the proposed PA is 0.18 mm2.  

In the simulation, the pads and bond wires are included for 

obtaining high-accuracy simulation results. The simulated S-

parameter results are shown in Fig.5. The simulated small-

signal gain is 28.6 dB, input return loss is −22.5 dB, and the 

output return loss is −14.9dB. The simulated stability factor 

is greater than unity, from 10 MHz to 60 GHz, as plotted in 

Fig.6. Fig.7 shows the simulated large-signal continuous-

wave power-sweep results at 28 GHz. With a 2.4 V supply, 

the PA achieves a power gain of 28.1 dB, PSAT of 25 dBm, 

peak PAE of 34.7 %, and PO,1dB of 22.6 dB. This PAE 

includes the power consumption of the input and driver 

stages. Fig.7. shows the current consumptions of the PA and 

DA stages versus the output power at 28 GHz. Initially, the 

quiescent currents in the PA and DA stages are 288 mA and 

TABLE I. Comparison of the proposed PA with the recently reported 

 Ka-band CMOS PAs. 

 
This 

Work# 
[22] [23] [24] 

Tech. 

(nm) 
65 28 90 65 

Freq. 

(GHz) 
28 28 28 28 

Gain 
(dB) 

28.1 13.6 16.3 15.6 

PSAT 

(dBm) 
25 19.8 26 15.5 

PO,1dB 

(dBm) 
22.6 18.6 23.2 13.9 

PAE 
(%) 

34.7 13.3 34.1 41 

Core 

area 

(mm2) 

0.18 0.28 0.24** 0.24 

*P.D 
(mW/

mm2) 

1755 341 1658 147 

+FOM 97.4 78.7 86.5 76.1 
#Simulated results 
*Power density is denoted as P.D. (PSAT/chip area) 

**Estimated core area from the reported photograph. 

+FOM=PSAT[dBm]+Gain[dB]+20log(fc[GHz]) +10log (PAEmax [%]). 
 

58 mA, respectively.The power dissipation is 760 mW under 

quiescent conditions. As the output power increases, the 

current consumptions of the PA and DA stage are 342 mA 

and 60 mA, respectively, in the saturated output power 

region, as plotted in Fig.8. 

Table 1 presents a comparison of the performance of this 

work and that of the recently reported 5G CMOS PAs in the 

mm-wave band. Thanks to the proposed power combiner and 

careful design of the PA, the output power, PAE, and power 

gain are maintained high, resulting in the highest FOM of 

97.4 among that of the reported CMOS PAs. 

 

IV. CONCLUSION  

In this paper, a Ka-band CMOS PA with a parallel power 

combiner using 65-nm CMOS technology is proposed. With 

the proposed power combiner, the PA achieves high output 

power with high efficiency performance and compact die 

area. The proposed PA achieves PSAT of 25 dBm in a 0.18 

mm2 core area, resulting in outstanding level 1755 mW/mm2  

Ka-band CMOS PAs. power density at 28 GHz. In comparison  

with the other recently reported mm-wave CMOS PAs, the 

proposed PA shows high power and the best overall 

performance. Thanks to compact size and high efficiency of 

proposed power combiner, it is a suitable solution for 

implementations in Ka-band applications. 
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