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Abstract - This paper details the development and extensive 
silicon-level verification of a 128 × 128 Readout Integrated 
Circuit (ROIC) tailored for uncooled Short-Wave Infrared 
(SWIR) imaging cameras, which operate at a 2.6 μm 
wavelength. We conducted silicon-level verification of the 
developed ROIC, enabling a detailed analysis of various 
performance aspects. This evaluation will help us identify 
potential explore for further improvements, significantly 
advancing SWIR imaging camera systems. Our goal is to gain 
a deeper understanding of performance dynamics to enhance 
operational efficiency and image quality. The prototype ROIC 
was manufactured using a 0.18-μm 1P6M CMOS process, 
featuring an effective pixel resolution of 128 (H) × 128 (V), 
specifically designed for InGaAs FPAs. The prototype 
consumes 42.25 mW of power and achieves a frame rate of 390 
frames per second. The fabricated chip show that the Noise 
level is 72.65 μVrms and Pixel-FPN is 21 LSBrms. 
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I. INTRODUCTION  

 
In recent years, there has been a global surge in interest 

towards Short-Wave Infrared (SWIR) image sensors, 
primarily driven by their diverse applications across various 
technological fields [1]-[3]. Particularly, SWIR imaging 
sensors utilizing Indium Gallium Arsenide (InGaAs) 
detector arrays have garnered considerable attention [4], [5]. 
This interest stems from the unique advantages offered by 
the SWIR optical band coupled with the matured InGaAs 
Focal Plane Array (FPA) technology. Unlike Mid-Wave 
Infrared (MWIR) and Long-Wave Infrared (LWIR) imaging, 
SWIR imaging leverages reflected light, facilitating the 

integration of various performance enhancement 
technologies already prevalent in the saturated domain of 
visible imaging systems [6]-[8].  

Over the recent years, significant advancements have been 
made in the primary performance metrics of InGaAs FPAs, 
such as reductions in dark current values and improvements 
in full well capacity [9]. These advancements have enabled 
the development of compact, low-power uncooled SWIR 
imaging cameras, a leap forward in the field. Furthermore, 
among the critical functional blocks constituting SWIR 
imaging systems, the Readout Integrated Circuit (ROIC) 
presents opportunities for additional performance 
enhancements of InGaAs FPAs [10]-[12]. For instance, 
through ROIC, sensitivity of InGaAs-based pixels can be 
controllable in both analog and digital domain depending on 
ambient conditions, while mitigating of pixel fixed pattern 
noise. Moreover, the technical and physical constraints of 
the sensor material can be effectively mitigated by 
incorporating advanced ROIC with correction technologies. 
These include methods that minimize inherent variations in 
InGaAs-based pixel characteristics due to temperature 
changes and stabilize Signal-to-Noise Ratio (SNR) 
variations based on dark current characteristics at different 
wavelengths, enhancing overall stability and reliability. This 
enables the realization of high-resolution, highly sensitive 
SWIR image sensors optimized in terms of area occupation, 
power consumption, and operational speed. 

In this work, our objective is to develop and validate a 128 
× 128 ROIC array specifically designed for InGaAs FPAs, 
with a focus on facilitating the creation of a 2.6 μm 
wavelength SWIR imaging camera. We conducted a silicon-
level verification of the developed ROIC, enabling a detailed 
analysis of diverse performance aspects. This evaluation will 
help to identify potential ways for further enhancements, 
thereby contributing significantly to the advancement of 
SWIR imaging camera systems. Finally, we aim to gain 
deeper insights into the performance dynamics for elevating 
their operational efficiency and imaging quality. 

The structure of the remainder of this paper is organized 
as follows: Section II details the design aspects of the 128 x 
128 ROIC array. Section III presents the experimental 
findings about the prototype chip. Finally, Section IV 
provides the conclusion. 
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II. CIRCUIT IMPLEMENTATION 

Fig.1 illustrates an overall block diagram of the 
prototype ROIC that is coupled with InGaAs-based SWIR 
FPA. The prototype ROIC is composed of Capacitive 
Transimpedance Amplifier (CTIA)-configured ROIC array, 
a row scanner, a column driver, and a column scanner. These 
components are supported by bias circuitry and control 
blocks designed to optimize the ROIC performance. The 
driving board is constructed using a 4-layer PCB, which 
includes various components for comprehensive 
functionality. It is equipped with power supply circuits (VPWs) 
to ensure stable power delivery, alongside clock control 
signals (VCTRLS) essential for operating the ROIC chip. 
Additionally, the board includes an ADC for converting the 
output analog signals into digital format. For system 
verification and control, a MCU and a DAC are also 
integrated into the driving board design. 

The processed signals from the ROIC array are 
conveyed to a pair of Analog-to-Digital Converters (ADCs) 
on the external driving board via two output channels, 
facilitated by column multiplexers (Mux). The specifications 
of the external ADC [13] are as follows: it has a resolution 
of 14 bits, with an Integral Nonlinearity (INL) and a 
Differential Nonlinearity (DNL) of ±2.5 and ±0.7, 
respectively. The Signal-to-Noise and Distortion Ratio 
(SNDR) is 77.5 dB, while the Spurious-Free Dynamic Range 
(SFDR) stands at 90 dB. Additionally, the input referred 
noise of the ADC is quantified at 0.36 LSB. Additionally, a 
Digital-to-Analog Converter (DAC) provides test signals, 
allowing the evaluation of the ROIC's unique functionalities 
and its performance metrics. The external DAC [14] features 
a 14-bit resolution. Its INL and DNL are both specified at 
±2.5. The SFDR is 82 dB. Additionally, the gain error falls 

within ±1% of the Full Scale Range (FSR), and the offset 
error is maintained within ±0.025% FSR. Conclusively, the 
micro controller unit (MCU) is responsible for generating 
varied operation timings for verification, managing the 
various control signals, and interfacing with external devices 
or systems. This ensures the proper signal processing or 
display of the imagery data acquired by the prototype ROIC. 

Fig.2 shows a simplified schematic of a signal readout 
chain that includes the CTIA-configured ROIC unit (pixel) 
along with a column driver. The readout signal chain starts 
with pixel input circuitry followed by the column driver 
circuit, composed of a bump pad, a CTIA, a global sample-
and-hold (S/H) circuit, a column line driver, a column S/H 
circuit, and a column output driver. The Bump pad is used 
for flip-chip bonding, connecting the ROIC to another 
substrate or component. Row and column of the whole ROIC 
array addressing operations are controlled by the row and 
column scanner circuits, respectively. The prototype ROIC 
supports two different readout modes: global shutter mode 
[15] and rolling shutter mode [16]. 
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Fig. 1. Overall block diagram of prototype ROIC 
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Fig. 2. Simplified schematic of CTIA-configured ROIC unit with 
column driver 
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Fig. 3. Simplified schematic of verification mode for ROIC array 
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In global shutter mode, all pixels in the ROIC array 

capture light simultaneously. Then, after a fixed exposure 
time, the ROIC reads out the signal from the entire pixel 
array. During this mode, the output of CITA is concurrently 
sampled using a global S/H circuit with the ΦSH and the CSH, 
to maintain the integrity of the exposure data. Conversely, 
the rolling shutter mode operates on a sequential exposure 
basis. Each row of pixels is activated in sequence by the row 
scanner, which allows for staggered exposure and readout in 
a row-wise progression. This process initiates from one end 
of the pixel array and advances systematically to the opposite 
end. Subsequent to integration, pixel signals are routed to the 
column readout circuits. The column readout circuitry is 
structured with multiple parallel columns, each equipped 
with a column amplifier with the MSF and ICOL, a column S/H 
circuit with the ΦCSH and the CCSH, and a column buffer. 
After amplification by the column amplifier, the pixel signal 
is captured and retained by the column S/H circuit, and 
subsequently buffered. It is then multiplexed via the column 
switch in a sequential manner at column level controlled by 
the column scanner. In the final stage, the multiplexed 
signals are directed off the chip via output drivers. 

Fig.3 presents a simplified schematic specifically for 
the verification mode of a ROIC array, which is essential for 
testing and performance analysis in SWIR imaging systems. 
In this mode, the ROIC unit is set to function as a unity buffer, 
achieved by activating the reset switch (ΦRST). This 
configuration enables a straightforward evaluation of the 

ROIC's operational characteristics. Test signals are 
generated using an external 14-bit DAC from the customized 
driving board, to produce a ramp signal that is applied to the 
positive node of the CTIA. The pixel's output replicates the 
test input, thereby facilitating a detailed verification of the 
ROIC array. By employing this approach, the ROIC design 
for SWIR imaging can be effectively utilized to address a 
wide range of operational issues and facilitate 
comprehensive performance analysis. 

Fig.4 illustrates a simplified operational timing 
diagram for three different modes of the prototype ROIC. In 
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Fig. 4. Simplified operational timing diagram of three modes: (a) 
global shutter mode, (b) rolling shutter modes, and (c) test mode 

 

Fig. 5. Microphotograph of the prototype ROIC chip 

 

 

Fig. 6. Test environment of customized InGaAs FPA 
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Fig. 7. Dark current density of customized InGaAs FPA in 
uncooling condition 
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the case of the Ф SH signal, it operates in an inverted 
structure, meaning that a "0" indicates Turn On, while a "1" 
represents Turn Off. In the global shutter mode (Fig.4 (a)), 
all pixels are simultaneously exposed to light, enabling 
synchronous image capture, and subsequently, the pixel data 
is read out in a sequenced manner. Conversely, the rolling 
shutter mode (Fig.4 (b)) employs a sequential approach, 
which allows for staggered exposure and readout in a 
sequential row-by-row manner. In the test mode (Fig.4 (c)), 
the ROIC is capable of simulating both the global and rolling 
shutter operations and utilizes a ramp input signal, ∆VRAMP, 
generated by an external DAC as the test input. 
 
 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
 The micrograph of the chip is shown in Fig.5. The 
prototype chip was fabricated using a 0.18-µm 1-poly 6-
metal (1P6M) CMOS technology, which occupies an area of 
5 × 5 mm2 with the 128 (H) × 128 (V) pixels array of 20 μm-
pitch pixels, the row scanner, the column driver, the column 
scanner, and column multiplexers. The prototype CIS 
demonstrates a frame rate of 390 frames/s with the master 
clock of 20 MHz. The total power consumption is 42.25 mW.  
 To assess the dark current of a customized InGaAs 
detector within a 128 × 128 unit, as shown in Fig.6, we 

conducted measurements on four test pixels at room 
temperature when it is not exposed to light. 
 Fig.7 shows the measured dark current density of 
InGaAs detector in the room temperature. The performance 
of dark current is approximately 100 times higher than that 
of Hamamatsu's product [17]-[19]. However, although the 
dark current level is quite high, considering that our 
measurements were taken under uncooled conditions, the 
results are still meaningful and provide valuable insights. 
We are actively developing methods to reduce ROIC noise, 
which is a critical step toward realizing high-resolution pixel 
arrays. We anticipate that with these ongoing efforts, we will 
be able to develop a competitive SWIR camera with 
improved performance in the near future.  

Fig.8 shows sample images captured from the output of 
the ROIC in test mode. To validate the operational 
characteristics of the ROIC, we obtained the output signal 
corresponding to a given test input through two output 
channels. This was achieved by shifting the signal by one 
clock cycle to effectively isolate and examine the ROIC's 
response. The measured performances of the prototype chip 
are summarized in Table I. 

Fig.9 represents the measured output noise histogram 
of the prototype ROIC for each pixel, which was utilized to 
measure the random noise (RN) of the ROIC. In this 
experiment, 1000 frames were captured in test mode to 
calculate the standard deviation of noise. When the ROIC 
operated at its full input range of 1.6 V, the total RN value 
was measured at 90.3 μVrms. The noise of the external ADC 
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Fig. 8. Captured test images with varied ramp signal input in  
test mode 

 

Fig.9. Measured output noise histogram of prototype ROIC 

Fig. 10. Characteristic curve of output voltage in relation to the 
input current magnitude 
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and DAC are 43.9 μVrms and 30.9 μVrms, respectively. 
Consequently, the prototype ROIC noise is calculated as 
72.65 μVrms.  

Fig. 10 depicts the characteristic curve of output 
voltage in relation to the input current magnitude. 
Measurements were carried out on a test-patterned 1 × 4 
ROIC array. For these measurements, input currents were 
generated using different resistances: a 100 megaohm (MΩ) 
resistor to produce a current of 100 picoamperes (pA), a 50 
MΩ resistor for a 200 pA current, and a 25 MΩ resistor to 
generate a current of 400 pA. The observations revealed that 
with each doubling of the input current, there was a 
corresponding decrease in the output voltage by a factor of 
two. Furthermore, a linear relationship was observed in 
terms of the integration time. These findings were 
instrumental in identifying key design issues within the 
ROIC and have provided clear guidance on the future 
research direction needed to improve the alignment and 
overall performance of the ROIC. 

 
 

IV. CONCLUSION  
 

In this study, we introduce a prototype design of a 128 
x 128 ROIC with the goal of furthering the development of 
an uncooled SWIR imaging camera operating at a 
wavelength of 2.6 μm. The developed ROIC was verified in 
various ways at the silicon level, which allowed for an 
extensive analysis of its various performance parameters. 
Utilizing this evaluation environment, we aim to generate 
and validate innovative concepts for enhancing SWIR 
imaging performance in diverse ways. 
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