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Abstract - In this paper, a CMOS power amplifier using a 
Self-Biasing-Resistor transistor for Ka-band is proposed. 
Generally, when designing a power amplifier with a cascode 
structure, a structure connecting the source and body of the 
transistor is used. This changes the inter-cascode voltage 
depending on the output of the common-source stage, which 
changes the body voltage of the common-gate stage, ultimately 
changing the I-V curve. Therefore, by inserting a large resistor 
between the body and the source, parasitic capacitors are used 
to split the RF signal swing in the body and compensate for 
voltage changes. As a result, AM-AM and IMD3 have been 
improved, and it has a linear output power of 13.1dBm and a 
linear PAE of 22.6% at a supply voltage of 2.4V. 

Keywords—AC Dividing, AM-AM, Cascode, CMOS, Ka-
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I. INTRODUCTION  

In the case of a CMOS power amplifier, distortion of 
communication signals occurs due to parasitic capacitance 
of the CMOS device. To improve the distortion of these 
signals, digital pre-distortion (DPD) and analog linearization 
techniques are used. Large linearity improvements can be 
achieved using DPD techniques. However, it is unsuitable 
for IoT because of its complex implementation and power 
consumption. Therefore, research on small size analog 
linearization circuits with low-power-consumption is needed 
for the RF CMOS PA for IoT. 

In previous studies, analog linearization techniques have 
been implemented by adding additional circuitry. However, 
because they have smaller size and lower power 
consumption compared to a power amplifier, there is a lack 
of research on the optimization of the circuit [1~5]. Although 
this may be less effective than a power amplifier, it is 
important in terms of implementing a power amplifier for 
IoT, where miniaturization and low power consumption are 
very important. Therefore, in this paper, we proposed a self-
biasing linearization technique that can improve the linearity 
of a power amplifier without additional area and power 
consumption by using a simple resistor. 

 
 

II. PA WITH SELF-BIASING-RESISTOR (SBR) TECHNIQUE 

CMOS power amplifiers typically feature a low 
breakdown voltage and lack a ground via, requiring 
grounding through bonding wire or metal lines. To address 
these challenges, they are often designed with both a 
differential structure and a cascode structure. When a 
differential structure is used, a virtual ground can be created 
and used. A Transmission Line Transformer (TLT), which 
can act as a balun, is used to convert single and differential 
signals. The TLT can also be used to match the impedance 
of the input and output. To match through an effective 
impedance matching network, the output TLT uses a 
broadside coupling method and has a size of 145um x 
100um. The input TLT uses the edge coupling method and 
has a size of 160um x 60um. The TLT used in the proposed 
power amplifier is shown in Figure 1. 

A gate width of 256um was determined and used for M1, 
M2, M3, and M4 transistors of the common-source (CS) and 
common-gate (CG) stages. In addition, to address the issue 
of gain reduction due to negative feedback from the 
transistor's parasitic capacitor, a cross-coupled capacitor was 
used in the CS stage and used as positive feedback to 
increase the gain. 

 

 
Fig. 1. Schematic of the proposed CMOS power amplifier. 
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When a cascode structure is used, a CS stage and a CG 
stage are used. The body and source of a CG transistor are 
connected in a general power amplifier. In the proposed 
power amplifier, a Self-Biasing-Resistor (SBR) technique 
has been proposed in which a resistor of several kOhm is 
inserted between the body and source of the CG transistor, 
as shown in the schematic in Figure 1. 
 
 
A. Analysis of cascode power amplifier with transistor body- 
source connection 
 

CMOS power amplifiers generally use a method of 
connecting the body and source of a transistor. The effect of 
this structure is that the body and source have the same DC 
voltage. However, this structure has problems due to the 
threshold voltage of the transistor. 
 

 
Fig. 2. CG transistor connecting body to source. 

 
Figure 2 is a CG transistor with a structure where the body 

and source are connected. When the body and source are 
connected,  𝑉𝑉𝑋𝑋, the inter-cascode voltage connecting the CS 
stage and the CG stage, has the same voltage as  𝑉𝑉𝑆𝑆𝑆𝑆 . 
Therefore, the threshold voltage  𝑉𝑉𝑇𝑇𝑇𝑇  remains constant 
according to equation (1). 
 

𝑉𝑉𝑇𝑇𝑇𝑇 =  𝑉𝑉𝑇𝑇0 + 𝛾𝛾(�|𝑉𝑉𝑆𝑆𝑆𝑆 + 2𝜙𝜙𝐹𝐹| −  �2𝜙𝜙𝐹𝐹)              (1) 
 

In equation (1),  𝑉𝑉𝑇𝑇𝑇𝑇 is the threshold voltage. 2𝜙𝜙𝐹𝐹 is the 
surface potential, 𝑉𝑉𝑆𝑆𝑆𝑆 is the source to body bias,  𝑉𝑉𝑇𝑇0 is the 
threshold voltage for the zero body voltage, and γ is the 
body effect parameter [6]. 

However, the transistor operates in the triode region and 
turns off when the RF signal swing is large. In addition, the 
transistor behaves as a resistor in the CS stage due to the RF 
signal swing. As the transistor spends more time in the triode 
region, both the  𝑅𝑅𝑑𝑑𝑑𝑑  resistance and the inter-cascode 
voltage  𝑉𝑉𝑋𝑋  increase. Therefore, as  𝑉𝑉𝑋𝑋  increases, the 
operating I-V curve of both the CS and CG transistors 

changes. It also increases the probability of the breakdown 
of the CS transistors. 

 
Fig. 3. Cascode structure of transistor connected to body source. 

 
B. Analysis of cascode power amplifier with the proposed 
Self-Biasing-Resistor technique 
 

There was a problem with the breakdown voltage 
occurring in the cascode power amplifier where the body and 
source were connected. Therefore, we propose a SBR 
technique that inserts resistors into the body and source. 

Figure 4 shows a CG transistor using the proposed SBR 
technique. The parasitic capacitor  𝐶𝐶𝑏𝑏𝑑𝑑  was not present 
when the body and source were connected without resistors. 
However, because a large 4000 Ohm resistor  𝑅𝑅𝐷𝐷𝑆𝑆  is 
inserted, the parasitic capacitor  𝐶𝐶𝑏𝑏𝑑𝑑 is visible. As shown in 
Figure 5, the impedances of the parasitic capacitors  𝐶𝐶𝑑𝑑𝑏𝑏 
and  𝐶𝐶𝑏𝑏𝑑𝑑 are generated. As shown in equations (2) and (3), 
an AC voltage swing is divided and applied to  𝑉𝑉𝑆𝑆𝑆𝑆  due to 
the impedance of  𝑍𝑍1 and  𝑍𝑍2. 
 
 

𝑍𝑍1 = 𝑍𝑍𝐶𝐶𝑑𝑑𝑏𝑏                     (2) 
 

𝑍𝑍2 =  𝑍𝑍𝐶𝐶𝑏𝑏𝑑𝑑 // 𝑍𝑍𝑅𝑅𝑏𝑏𝑑𝑑              (3) 
 
 

The RF signal swing applied to the  𝑉𝑉𝑆𝑆𝑆𝑆  changes 
according to the operating range of the CS transistor. Figure 
6 shows the voltage variation of  𝑉𝑉𝑋𝑋 as a function of the RF 
signal swing applied to the gate. When a positive voltage is 
applied to the CS gate, a negative voltage is applied to the 
inter-cascode voltage  𝑉𝑉𝑋𝑋  and the body voltage  𝑉𝑉𝑆𝑆𝑆𝑆 
decreases. Then, the threshold voltage  𝑉𝑉𝑇𝑇𝑇𝑇 of the CG stage 
decreases and  𝑉𝑉𝑋𝑋 operates in the direction of increasing the 
voltage. Therefore, the decreasing voltage of  𝑉𝑉𝑋𝑋  can be 
compensated.  
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Fig. 4. CG transistor with resistance inserted between body and source. 

 

 
   Fig. 5. AC Dividing.  

 
When a negative voltage is applied to the gate of the CS 

transistor. Contrary to the case when a positive voltage is 
applied, a positive voltage is applied to  𝑉𝑉𝑋𝑋 and the body 
voltage  𝑉𝑉𝑆𝑆𝑆𝑆 increases. The threshold voltage  𝑉𝑉𝑇𝑇𝑇𝑇 of the 
CG transistor increases and  𝑉𝑉𝑋𝑋 operates in the direction of 
decreasing the voltage. It, therefore, compensates for the 
increasing  𝑉𝑉𝑋𝑋 voltage.  

Figure 6 shows the AC voltage swing applied to  𝑉𝑉𝑆𝑆𝑆𝑆 
when using the SBR technique. We have confirmed that the 
AC voltage swing is in the range of approximately -0.5V to 
0.2V.  
 

Fig. 6. AC voltage swing of  𝑉𝑉𝑆𝑆𝑆𝑆. 
 

  
Fig. 7. 𝑉𝑉𝑋𝑋 voltage due to CS transistor operation. 

 
As above, the voltage  𝑉𝑉𝑋𝑋 is determined by the negative 

and positive voltages applied to the CS transistor, and the 
voltage of  𝑉𝑉𝑋𝑋 is kept constant. Therefore, a constant I-V 
curve is obtained regardless of the output of the CS transistor. 

Figure 8 shows the voltage applied to the inter-cascode 
voltage  𝑉𝑉𝑋𝑋 . We have seen that the voltage applied is 
constant using the SBR technique. 

 

 
   Fig. 8. Inter-cascode voltage 𝑉𝑉𝑋𝑋. 

 

 C. Simulation results 

   
(a) 
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(b) 

 
Fig. 9. 1-tone simulation results of (a)AM-AM and (b) AM-PM. 

 
Figure 9 shows the AM-AM and AM-PM distortion res-

ults confirmed by a 28GHz 1-tone simulation of the propo-
sed power amplifier. It can be seen that the AM-AM disto-
rtion is improved when the SBR technique is used. 
 

 
   (a) 

 
  (b) 

 
Fig. 10. 2-tone simulation results of (a)IMD3 and (b)PAE. 

 

As shown in Figure 10, a power added efficiency (PAE) 
of 22.64% at an output power of 13.1 dBm based on IMD3    
-30dBc was confirmed using a 2-tone simulation with a 
center frequency of 28 GHz and a tone spacing of 160MHz. 
 

 
Fig. 11. Proposed CMOS Power Amplifier layout 

 

TABLE I.  
COMPARISON WITH RECENTLY REPORTED CMOS POWER AMPLIFIERS

Reference Frequency 
(GHz) 

CS / CG TR  
Gate width 

(um) 
VDD 
(V) 

Psat 

(dBm) 
Plinear 
(dBm) 

Linear  
PAE (%) Config. Process 

2021 
Wonho Lee 28 192 / 

192 2.4 19.1 11.9 16.8 DCC, 
BCI 65nm 

2016 ISSCC 
S.Shakib 30 384 / 

- 1.15 15.3 5.3 9.6 CS 28nm 

2017 RFIC 
Yang Zhang 27 178 / 

- 1 18.1 8.4 8.8 CS 40nm 

2019 MWCL 
Seungkyeong 

Lee 
28 112*4 / 

112*4 2.2 18.5 7.5 6.2 PCC 65nm 

This Work 
(Simulated) 28 256 / 

256 2.4 19.6 13.1 22.6 
Self 

Biasing 
Resistor  

65nm 
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Fig. 12. Microphotograph of the proposed CMOS PA. 

 
When using the SBR technique, we confirmed that 

linearity was improved. Detailed simulation results and 
comparison tables are given in Table 1. Figure 11 shows the 
proposed CMOS power amplifier layout and Figure 12 is a 
microphotograph of the proposed CMOS power amplifier. 
 
 

III. CONCLUSION 

In this paper, we propose a CMOS power amplifier using 
the SBR technique. It operates at a frequency of 28GHz and 
has a supply voltage of 2.4V. As a result of the simulation, a 
saturated output power of 19.6dBm and a peak PAE of 
37.49% are obtained. Additionally, AM-AM distortion has 
been improved to achieve a linear output power of 13.1dBm 
at IMD -30dBc, and 22.6% PAE at that output power.  
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