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Abstract — As the complexity of in-vehicle network is

increased, zonal architecture is proposed for the next
generation network architecture. The zonal architecture
divides the in-vehicle network into local networks and
interconnects the local networks in a central gateway. This
paper proposes a local network processor based on local
interconnect network (LIN). The processor includes a light-
weight core and dedicated LIN controller to achieve design
goals such as design area and performance. The processor is
fabricated with TSMC 180nm CMOS process and the
characteristics are compared to Samsung 28nm process.
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I. INTRODUCTION

The trends of in-vehicle network systems are migrating to
the zonal architectures to deal with the increasing network
traffics [1,2]. A modern automotive includes enormous
electrical devices such as multi-modal sensors and digital
processors that require high speed and high bandwidth
communications [3,4]. In addition, the complex connectivity
of electrical devices causes intensive power consumption
and communication errors. The zonal architecture divides
the region of in-vehicle network into local networks and
interconnects each local networks in a central gateway [5].
The distributed networks effectively address the issues by
alleviating the network loads and bottlenecks [6].

In the zonal architecture, the central gateway needs to
adopt high speed communication interface such as CAN
with flexible data rate (CAN-FD) and ethernet in order to
minimize the latency between the local networks [7,8].
CAN-FD is widely employed to conventional network
domain achieving higher bandwidth than controller area
network (CAN) [9]. Ethernet is employed to deal with the
large size of data acquired from processing images or sensor
data. High-level security and safety features are also critical
part of the network systems [10]. To achieve the constraints,
hardware encryption engines such as advanced encryption
standard (AES) and safety mechanism such as lock step or
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error correction code (ECC) are applying to the network
communication processors [11,12].

The local networks distribute the communication loads by
processing the data derived from the local devices. As the
adjacent ECUs and sensors are connected in the local
networks, not only high-speed interface but also flexible,
efficient, and power reasonable interfaces are essential. The
in-vehicle network interfaces such as CAN, CAN-FD,
FlexRay, single edge nibble transmission (SENT), and local
interconnect network (LIN) are employed according to the
requirements of connected electrical devices [13,14].

In this paper, a communication processor for local
network is proposed. The designed processor includes a
Cortex-MO core and a hardware dedicated LIN controller.
The Cortex-MO is a lightweight core which advantages in
design area and power budget but lacks in computing
performance. In order to complement the performance of
processor, the LIN controller performs communication
functions such as decoding LIN frame header, responding
messages, error detecting and handling. The Cortex-MO core
configures the LIN controller by accessing registers through
advanced high-performance bus (AHB) interface, and the
LIN controller offloads the communication loads. The
proposed processor was designed with Verilog HDL,
implemented with field programmable gate array (FPGA)
and TSMC 180nm CMOS process.

The contributions of this paper are as follows. The
hardware architecture of processor and LIN controller are
proposed. A simulation model and method for verification of
the processor are presented, and the simulation scenarios can
migrate to FPGA implementation or application specific
integrated circuit (ASIC) demonstration. The function of the
processor is successfully demonstrated in ASIC level, and
the experimental environment is presented. Finally, the
design area and power results are compared with TSMC
180nm CMOS process and Samsung 28nm CMOS process.

The remained sections are described as follows. Section 2
explains the background of LIN communication and
hardware required parts. Section 3 presents the architectures
of the proposed processor and LIN controller. Section 4
describes the simulation model. Section 5 analyzes
implementation and experiment results, and Section 6
concludes this paper.
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II. BACKGROUND
A. LIN protocol

LIN communication provides low-speed data rate and
employs single line bus interface. Fig. 1 shows the LIN
frame format and network architecture. LIN network is
implemented with one master node and multiple slave nodes.
All the nodes in the LIN network share the bus line and
communicate with data rate up to 20kbps. The LIN bus has
two physical states called dominant and recessive. The
dominant state is logically low and takes priority to the
recessive state that is logically high. The LIN frame consists
of two-part, header and response. The header includes the
break field, break delimiter, sync field, PID field. Only a
master node asserts the frame header, therefore LIN
communication is scheduled by the master node. The
response includes the data field and checksum field. A
master node or slave node can release the response part.

The break field informs a start of the frame by remaining
13-bit of dominant state. The sync field sets the data rate of
current frame by switching recessive and dominant state at
1-bit intervals. All the nodes have to synchronize the data
rate dynamically according to the sync field. The PID field
contains 6-bit of frame ID and 2-bit of the parity of the frame
ID. The frame ID determines the publisher and subscriber of
the data field according to the pre-defined rules. The parity
bits indicate a validation of current frame header. When
invalid parity bits are received, all the nodes in the LIN
network assert error flag. The data field has dynamic data
length from 1-byte to 8-byte. The data length is also pre-
defined by the frame ID. The checksum field is calculated
with the data from PID field to data field. The subscriber
calculates the checksum value and compares the value to the
received checksum field. When the checksum values are not
matched, the subscriber asserts error flag.

B. Hardware friendly parts

The 13-bit times of dominant state distinguishes the break
field from the other fields. The fields from sync field to
checksum field comply with a universal asynchronous
receiver transmitter (UART) data format. A dominant bit is
released at the start of the data and a recessive bit follows the
8-bit data. Therefore, from sync field to checksum field, the
dominant state drives only up to 9-bit times. As a result, the
13-bit length of break field is a key point to detect a valid
frame header. Detecting a valid break field is advantageous
to hardware as measuring exact bit time is required.

The sync field determines the data rate of current frame.
The 13-bit length of break field is also measured based on
the 1-bit time of sync field. Estimating the data rate in sync
field is a time sensitive task that is related to detecting valid
frame header and synchronization. Therefore, a dedicated
hardware for processing sync field and break field pair is
required to detect valid frame header exactly.

LIN communication provides several error conditions. A
parity error occurs when the frame ID and parity bits are not
matched. A frame error indicates that the received data do
not comply the stop bit condition defined in UART data
format. A checksum error occurs when the checksum values
are not matched. The error conditions are detected by
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Fig. 1. LIN frame and network architecture.
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Fig. 2. Architecture of local network processor.

checking the frame data bit sequentially. Therefore,
detecting errors is a hardware friendly component. In this
work, the designed LIN controller supports detecting valid
frame header, checking data integrity, and error detecting.

III. ARCHITECTURE
A. Local network processor

Fig. 2 shows the entire architecture of the local network
processor. The processor employs a Cortex-MO core and
includes memory, bus, external interface, and peripherals.
The Cortex-MO core is a master node of the AHB for read
and write operation. The on-chip memory, flash controller,
external SRAM interface, and LIN controller are connected
to the AHB. Program instructions are stored in the external
flash memory and the instruction data are copied to the on-
chip memory or external SRAM at reset sequence. The
Cortex-MO0O core fetches instructions from the internal
memory or external SRAM and executes the program.

The LIN controller provides LIN functions such as
detecting frame header, responding data, checking data
integrity, and error handling. The Cortex-MO0 accesses the
registers of LIN controller through AHB and configures the
LIN controller. A LIN bus is physically implemented
through the external LIN PHY.

The advanced peripheral bus (APB) is implemented as a
AHB slave node. The AHB to APB bridge converts AHB
signals to APB protocol. The UART, timer, serial peripheral
interface (SPI), inter-integrated circuit (I12C), and GPIO are
connected as APB slave nodes. The UART, SPI, and 12C
modules support serial communication interfaces for
interconnecting with external devices. The timer and GPIO
provides time-related functions and external pin controls
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Fig. 3. Architecture of LIN controller.

B. LIN controller

Fig. 3 is a block diagram of the designed LIN controller.
The LIN controller is interfaced with AHB, and the
processor can access the register by AHB to perform LIN
communication. The receiver is a module that receives
frames and includes a rx filter, a header receiver, and a data
receiver. The rx filter mitigates LIN bus noises for stable
receiving operations. The frequency bandwidth of filter is
able to be configured according to the bus clock frequency
and filter counter register value. The header receiver is
designed to detecting valid frame header condition and data
rate by dedicated hardware. The header receiver compares
dominant bit time periodically to find break, sync field pair.

After receiving a valid frame header and estimating data
rate, the data receiver samples data from the PID field to the
checksum field. During the reception and transmission, the
framer generates frames according to the data structure of
LIN protocol. Framer also calculates the checksum and
detects error conditions such as frame error, parity error, and
checksum error. When an error occurs, the framer informs an
interrupt request to the processor. Transmitter is a module
that transmits frame responses based on transmission data
stored in the register. Transmitter controls transfer sequence
dynamically through the commands from register when
exceptions occur.

IV. SIMULATION
A. LIN controller simulation

The designed LIN controller was simulated at block level
and top level. A block level simulation is efficient for
simulation time since the simulation does not include other
design sources. The Fig. 4 shows the block level simulation
environment of LIN controller. The LIN controller is a
design under test (DUT). In order to modeling LIN bus and
communication functions, the bus functional model (BFM)
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for AHB and LIN bus are implemented. The AHB BFM
includes AHB read, write task and interrupt request (IRQ) model.
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Fig. 4. Simulation environment of LIN controller.

CPU behaviors for control LIN controller were
implemented through the AHB BFM. The register of LIN
controller was configured with the AHB task according to
the simulation scenarios.

The LIN BFM includes timing configuration, frame
monitor, header generation, and response generation tasks.
The timing configuration task sets data rate of LIN BFM.
The header generation task asserts a LIN frame header to the
receive pin of LIN controller. The frame ID is an argument
of header generation task. The parity values are calculated
automatically by the frame ID argument. The bit rate of
header is determined through the configuration of timing
task. When a frame header is received to the LIN controller,
the LIN controller responds or ignores the header according
to the register configuration. The response generation task
asserts a LIN frame response to the receive pin of the LIN
controller. The length and values of the receive data values
are arguments of the task. The response generation task only
calls after a header generation task. The checksum values are
calculated internally from PID field of previous header
generation task to the data of current response generation
task. Receiving functionality of LIN controller is covered
by the header generation task and response generation task.
The frame monitor task samples the transmit pin of LIN
controller with the data rate of timing configuration task. The
frame monitor task detects transfer errors such as frame error
and checksum error.

A LIN description file (LDF) is a standard format for LIN
network implementation. The LDF includes the information
such as communication speed, node names of network,
communication schedule table, frame descriptions, and the
relations of publisher and subscriber according to the PID.
The simulation scenario of block level simulation is
synchronized to the LDF by implementing LIN network
through the BFMs. The LDF scenario is migrated to top level
simulation and ASIC functional demonstration. Therefore,
the same scenario is employed from simulation to
demonstration. The functional demonstration environment is
described in section 5.
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Fig. 5. Compile environment for top simulation.

B. Top simulation

Fig. 5 shows the compile environment for top level
simulation. The compiler includes GNU compiler collection
(GCC), assembler, linker, object dump, etc. The assembler
translates a program code into assembly languages and the
GCC compiles the assembly to binary instructions for
Cortex-M0. The linker maps the address of the compiled
code and outputs the final object file. Object dump
disassemble the compiled object files for debugging. In
compile process, a hex format text file is also extracted to
employ the instructions in top level simulation. The hex data
isread in internal memory model when top level simulation starts.

Top simulation verifies the core functionality, bus
interconnect, and peripherals. Test codes are written
according to the simulation scenarios such as memory access
test, flash interface, program download sequence, peripheral
function test. In order to simulate the scenarios, simulation
models for external SRAM and flash memory are
implemented.

Especially the top-level simulation for LIN controller is a
key feature. The LIN BFM is migrated to top level
simulation for verifying communication functions. The
Cortex-M0O is programmed to implement a LIN node
described in the LDF and the LIN network is implemented
through the LIN BFM. Fig. 6 shows the simulation result for
frame header reception and response transmission of the LIN
controller. A frame header including the break field, sync
field, and PID field is inserted through the LIN receiver pin.
When the frame header is received, the register informs
current state of LIN communication and samples the receive
data. The LIN controller responds to the frame header when
the PID field is valid to the register configurations.
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Fig. 6. Simulation result of LIN controller.

A LIN bus is implemented in the simulation environment,
therefore the output of LIN transmitter signal is reflected to
the LIN receiver signal. The simulation results confirm the
integrity of the design.
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Fig. 8. Prototype PCB.
V. CHIP IMPLEMENTATION AND RESULTS

A. Chip layout

Fig. 7 shows the chip layout of the processor designed by
the TSMC 180nm process. The designed processor includes
a Cortex-MO core, debug modules, peripherals such as
UART, SPI, Timer and GPIO, and the LIN controller as a
communication controller. Internal SRAM is not included in
the design. Instead, an external SRAM is employed for code
memory and data memory. The chip size is 3.4mm X 3mm
and the core size is 1785um X 1385um. The operating
frequency of the processor is 24MHz, and each operating
voltages of the standard cell and 1O cell are 1.8V and 3.3V.

B. PCB prototyping

A prototype PCB including the implemented chip (HM1),
external SRAM, Flash memory, LIN PHY, and signal ports
is designed as shown in Fig. 8. The flash memory receives
instructions which compiled by Cortex-M0 compiler
through the JTAG port. Additionally, the JTAG port is
employed for debugging of the HM1, reading the internal
registers and memory values of the specific addresses. When
the PCB board powered-on or reset, the HM1 reads program
instructions from flash memory and stores the instructions
into the external SRAM. After a booting sequence, the HM 1
performs the program sequentially by accessing the external
SRAM. The LIN PHY employed for the physical layer of
LIN communication, and the 12V connecter provides power
to the LIN PHY.
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C. Verification
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Fig. 9 Experimental environment of LIN communication.

In order to verify the designed processor and LIN
controller, the verification environment is implemented as
shown in Fig. 9. The prototype PCB, LIN interface,
hardware scope, and NXP automotive development board
are employed. Vector-VN1630A and PicoScope-5000 are
employed as a LIN interface and hardware scope. The
hardware scope provides a LIN physical layer and captures
a LIN frame sampled through the LIN bus. A LIN network
is implemented with the LIN interface, chip test board and
NXP development board. The LIN interface links a LDF to
Vector-Canoe software and provides virtual LIN nodes
described in the LDF. Therefore, the LDF network condition
is migrated from simulation to verification. A target LIN
node that is specified in the LDF is implemented with the
chip test board by programming the designed processor.
Another LIN node in the LDF is implemented with the NXP
development board. The NXP development board supports
LIN communication functions and physical layers. By
employing the NXP board as a LIN node, we demonstrated
that the designed processor is able to communicate with the
commercial boards. Other LIN nodes in the LDF are
modeled with virtual LIN node. We verified that the
designed processor successfully detects valid LIN headers
and responds to the headers exactly. The captured waveform
is presented in Fig. 9.

TABLE 1. Area and power report.

Area (um?) Power (mW)
Block Samsung TSMC Samsung TSMC
28nm 180nm 28nm 180nm
Cortex-M0 5,478 178,812 0.203 1.450
LIN Ctrl. 2,102 39,140 0.0819 1.972
UART 476 9,744 0.0207 0.549
SPI 253 4,623 0.0115 0.275
Timer 710 7,468 0.0286 0.377
Total 9,019 239,787 0.346 4.623

http://www.idec.or.kr

D. Chip specification

Table 1 presents the area and power estimation of the
designed processor according to the TSMC 180nm CMOS
process and Samsung 28nm CMOS process. Area and power
for the detailed modules commonly included in the
processors are compared. The design area of the Cortex-MO
core is measured as 5,478um? for the Samsung 28nm and
178,812um? for the TSMC 180nm. As the core design in
TSMC 180nm includes additional logic such as debug and
debugger access port (DAP) modules, the area of Samsung
28nm process takes 3.06% of the design area compared to
TSMC 180nm process. The LIN controller, UART, SPI, and
Timer modules include the same design in both processes,
and Samsung 28nm process accounts for an average design
area of 5.81% compared to TSMC 180nm process.

To compare the power consumption of the designed
processor, the power is measured using design compiler (DC)
based on a saif of the simulation. We employ a vectored
power estimation to estimate the power in a power intensive
situation. The saif includes the toggle information according
to the simulation results. The core consumes 1.45mW in the
TSMC 180nm process and 0.203mW in the Samsung 28nm
process. The Samsung process power result occupies 14% of
power consumption compared to TSMC process. The total
power values including core, LIN controller, UART, SPI and
timer are estimated 0.346mW, 4.623mW according to the
process. As a result, Samsung 28nm process consumes 7.48%
of power compared to the TSMC 180nm process in average.

VI. CONCLUSION

In this paper, a communication processor for local
network is proposed. The processor includes a Cortex-MO
core, dedicated LIN controller and peripherals for achieving
performance and power budget. To verify the design, block-
level simulation and top-level simulation are performed.
Simulation models such as bus functional model, external
SRAM and flash memory are implemented. The simulation
model implements LIN network scenarios by employing a
LDF which includes LIN nodes, frame definitions, and
network schedules. The LIN network scenarios are migrated
to physical demonstration to synchronize results. The
proposed processor is successfully demonstrated in ASIC
level.

The experimental environment is implemented with a test
PCB board, LIN interface, hardware scope, and NXP
development board. We verify the functionality of LIN
communication by capturing LIN frames through the
experimental environment.

The designed processor is fabricated with TSMC 180nm
CMOS process. We compared the design area and power
with Samsung 28nm process.
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