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Abstract – As the complexity of in-vehicle network is 
increased, zonal architecture is proposed for the next 
generation network architecture. The zonal architecture 
divides the in-vehicle network into local networks and 
interconnects the local networks in a central gateway. This 
paper proposes a local network processor based on local 
interconnect network (LIN).  The processor includes a light-
weight core and dedicated LIN controller to achieve design 
goals such as design area and performance.  The processor is 
fabricated with TSMC 180nm CMOS process and the 
characteristics are compared to Samsung 28nm process.  
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I. INTRODUCTION 

The trends of in-vehicle network systems are migrating to 
the zonal architectures to deal with the increasing network 
traffics [1,2]. A modern automotive includes enormous 
electrical devices such as multi-modal sensors and digital 
processors that require high speed and high bandwidth 
communications [3,4]. In addition, the complex connectivity 
of electrical devices causes intensive power consumption 
and communication errors. The zonal architecture divides 
the region of in-vehicle network into local networks and 
interconnects each local networks in a central gateway [5]. 
The distributed networks effectively address the issues by 
alleviating the network loads and bottlenecks [6]. 

In the zonal architecture, the central gateway needs to 
adopt high speed communication interface such as CAN 
with flexible data rate (CAN-FD) and ethernet in order to 
minimize the latency between the local networks [7,8]. 
CAN-FD is widely employed to conventional network 
domain achieving higher bandwidth than controller area 
network (CAN) [9]. Ethernet is employed to deal with the 
large size of data acquired from processing images or sensor 
data. High-level security and safety features are also critical 
part of the network systems [10]. To achieve the constraints, 
hardware encryption engines such as advanced encryption 
standard (AES) and safety mechanism such as lock step or 

error correction code (ECC) are applying to the network 
communication processors [11,12]. 

The local networks distribute the communication loads by 
processing the data derived from the local devices. As the 
adjacent ECUs and sensors are connected in the local 
networks, not only high-speed interface but also flexible, 
efficient, and power reasonable interfaces are essential. The 
in-vehicle network interfaces such as CAN, CAN-FD, 
FlexRay, single edge nibble transmission (SENT), and local 
interconnect network (LIN) are employed according to the 
requirements of connected electrical devices [13,14].  

In this paper, a communication processor for local 
network is proposed. The designed processor includes a 
Cortex-M0 core and a hardware dedicated LIN controller. 
The Cortex-M0 is a lightweight core which advantages in 
design area and power budget but lacks in computing 
performance. In order to complement the performance of 
processor, the LIN controller performs communication 
functions such as decoding LIN frame header, responding 
messages, error detecting and handling. The Cortex-M0 core 
configures the LIN controller by accessing registers through 
advanced high-performance bus (AHB) interface, and the 
LIN controller offloads the communication loads. The 
proposed processor was designed with Verilog HDL, 
implemented with field programmable gate array (FPGA) 
and TSMC 180nm CMOS process. 

The contributions of this paper are as follows. The 
hardware architecture of processor and LIN controller are 
proposed. A simulation model and method for verification of 
the processor are presented, and the simulation scenarios can 
migrate to FPGA implementation or application specific 
integrated circuit (ASIC) demonstration. The function of the 
processor is successfully demonstrated in ASIC level, and 
the experimental environment is presented. Finally, the 
design area and power results are compared with TSMC 
180nm CMOS process and Samsung 28nm CMOS process. 

The remained sections are described as follows. Section 2 
explains the background of LIN communication and 
hardware required parts. Section 3 presents the architectures 
of the proposed processor and LIN controller. Section 4 
describes the simulation model. Section 5 analyzes 
implementation and experiment results, and Section 6 
concludes this paper. 
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II. BACKGROUND 

A. LIN protocol 

LIN communication provides low-speed data rate and 
employs single line bus interface. Fig. 1 shows the LIN 
frame format and network architecture. LIN network is 
implemented with one master node and multiple slave nodes. 
All the nodes in the LIN network share the bus line and 
communicate with data rate up to 20kbps. The LIN bus has 
two physical states called dominant and recessive. The 
dominant state is logically low and takes priority to the 
recessive state that is logically high. The LIN frame consists 
of two-part, header and response. The header includes the 
break field, break delimiter, sync field, PID field. Only a 
master node asserts the frame header, therefore LIN 
communication is scheduled by the master node. The 
response includes the data field and checksum field. A 
master node or slave node can release the response part.  

The break field informs a start of the frame by remaining 
13-bit of dominant state. The sync field sets the data rate of 
current frame by switching recessive and dominant state at 
1-bit intervals. All the nodes have to synchronize the data 
rate dynamically according to the sync field. The PID field 
contains 6-bit of frame ID and 2-bit of the parity of the frame 
ID. The frame ID determines the publisher and subscriber of 
the data field according to the pre-defined rules. The parity 
bits indicate a validation of current frame header. When 
invalid parity bits are received, all the nodes in the LIN 
network assert error flag. The data field has dynamic data 
length from 1-byte to 8-byte. The data length is also pre-
defined by the frame ID. The checksum field is calculated 
with the data from PID field to data field. The subscriber 
calculates the checksum value and compares the value to the 
received checksum field. When the checksum values are not 
matched, the subscriber asserts error flag.   
 
B. Hardware friendly parts 

The 13-bit times of dominant state distinguishes the break 
field from the other fields. The fields from sync field to 
checksum field comply with a universal asynchronous 
receiver transmitter (UART) data format. A dominant bit is 
released at the start of the data and a recessive bit follows the 
8-bit data. Therefore, from sync field to checksum field, the 
dominant state drives only up to 9-bit times. As a result, the 
13-bit length of break field is a key point to detect a valid 
frame header. Detecting a valid break field is advantageous 
to hardware as measuring exact bit time is required.  

The sync field determines the data rate of current frame. 
The 13-bit length of break field is also measured based on 
the 1-bit time of sync field. Estimating the data rate in sync 
field is a time sensitive task that is related to detecting valid 
frame header and synchronization. Therefore, a dedicated 
hardware for processing sync field and break field pair is 
required to detect valid frame header exactly.     

LIN communication provides several error conditions. A 
parity error occurs when the frame ID and parity bits are not 
matched. A frame error indicates that the received data do 
not comply the stop bit condition defined in UART data 
format. A checksum error occurs when the checksum values 
are not matched. The error conditions are detected by 

checking the frame data bit sequentially. Therefore, 
detecting errors is a hardware friendly component. In this 
work, the designed LIN controller supports detecting valid 
frame header, checking data integrity, and error detecting.  

 
III. ARCHITECTURE 

A. Local network processor 

Fig. 2 shows the entire architecture of the local network 
processor. The processor employs a Cortex-M0 core and 
includes memory, bus, external interface, and peripherals. 
The Cortex-M0 core is a master node of the AHB for read 
and write operation. The on-chip memory, flash controller, 
external SRAM interface, and LIN controller are connected 
to the AHB. Program instructions are stored in the external 
flash memory and the instruction data are copied to the on-
chip memory or external SRAM at reset sequence. The 
Cortex-M0 core fetches instructions from the internal 
memory or external SRAM and executes the program. 

The LIN controller provides LIN functions such as 
detecting frame header, responding data, checking data 
integrity, and error handling. The Cortex-M0 accesses the 
registers of LIN controller through AHB and configures the 
LIN controller. A LIN bus is physically implemented 
through the external LIN PHY.  

The advanced peripheral bus (APB) is implemented as a 
AHB slave node. The AHB to APB bridge converts AHB 
signals to APB protocol. The UART, timer, serial peripheral 
interface (SPI), inter-integrated circuit (I2C), and GPIO are 
connected as APB slave nodes. The UART, SPI, and I2C 
modules support serial communication interfaces for 
interconnecting with external devices. The timer and GPIO 
provides time-related functions and external pin controls 

 
Fig. 1. LIN frame and network architecture. 

 
Fig. 2. Architecture of local network processor. 
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B. LIN controller 

Fig. 3 is a block diagram of the designed LIN controller. 
The LIN controller is interfaced with AHB, and the 
processor can access the register by AHB to perform LIN 
communication. The receiver is a module that receives 
frames and includes a rx filter, a header receiver, and a data 
receiver. The rx filter mitigates LIN bus noises for stable 
receiving operations. The frequency bandwidth of filter is 
able to be configured according to the bus clock frequency 
and filter counter register value. The header receiver is 
designed to detecting valid frame header condition and data 
rate by dedicated hardware. The header receiver compares 
dominant bit time periodically to find break, sync field pair.  

After receiving a valid frame header and estimating data 
rate, the data receiver samples data from the PID field to the 
checksum field. During the reception and transmission, the 
framer generates frames according to the data structure of 
LIN protocol. Framer also calculates the checksum and 
detects error conditions such as frame error, parity error, and 
checksum error. When an error occurs, the framer informs an 
interrupt request to the processor. Transmitter is a module 
that transmits frame responses based on transmission data 
stored in the register. Transmitter controls transfer sequence 
dynamically through the commands from register when 
exceptions occur.  
 

IV. SIMULATION  

A. LIN controller simulation 

The designed LIN controller was simulated at block level 
and top level. A block level simulation is efficient for 
simulation time since the simulation does not include other 
design sources. The Fig. 4 shows the block level simulation 
environment of LIN controller. The LIN controller is a 
design under test (DUT). In order to modeling LIN bus and 
communication functions, the bus functional model (BFM) 

for AHB and LIN bus are implemented. The AHB BFM 
includes AHB read, write task and interrupt request (IRQ) model. 

 
 CPU behaviors for control LIN controller were 

implemented through the AHB BFM. The register of LIN 
controller was configured with the AHB task according to 
the simulation scenarios.  

The LIN BFM includes timing configuration, frame 
monitor, header generation, and response generation tasks. 
The timing configuration task sets data rate of LIN BFM. 
The header generation task asserts a LIN frame header to the 
receive pin of LIN controller. The frame ID is an argument 
of header generation task. The parity values are calculated 
automatically by the frame ID argument. The bit rate of 
header is determined through the configuration of timing 
task. When a frame header is received to the LIN controller, 
the LIN controller responds or ignores the header according 
to the register configuration. The response generation task 
asserts a LIN frame response to the receive pin of the LIN 
controller. The length and values of the receive data values 
are arguments of the task. The response generation task only 
calls after a header generation task. The checksum values are 
calculated internally from PID field of previous header 
generation task to the data of current response generation 
task.  Receiving functionality of LIN controller is covered 
by the header generation task and response generation task. 
The frame monitor task samples the transmit pin of LIN 
controller with the data rate of timing configuration task. The 
frame monitor task detects transfer errors such as frame error 
and checksum error. 

A LIN description file (LDF) is a standard format for LIN 
network implementation. The LDF includes the information 
such as communication speed, node names of network, 
communication schedule table, frame descriptions, and the 
relations of publisher and subscriber according to the PID. 
The simulation scenario of block level simulation is 
synchronized to the LDF by implementing LIN network 
through the BFMs. The LDF scenario is migrated to top level 
simulation and ASIC functional demonstration. Therefore, 
the same scenario is employed from simulation to 
demonstration. The functional demonstration environment is 
described in section 5. 

 
Fig. 3. Architecture of LIN controller. 

 
 

Fig. 4. Simulation environment of LIN controller. 
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B. Top simulation 

Fig. 5 shows the compile environment for top level 
simulation. The compiler includes GNU compiler collection 
(GCC), assembler, linker, object dump, etc. The assembler 
translates a program code into assembly languages and the 
GCC compiles the assembly to binary instructions for 
Cortex-M0. The linker maps the address of the compiled 
code and outputs the final object file. Object dump 
disassemble the compiled object files for debugging. In 
compile process, a hex format text file is also extracted to 
employ the instructions in top level simulation. The hex data 
is read in internal memory model when top level simulation starts. 

Top simulation verifies the core functionality, bus 
interconnect, and peripherals. Test codes are written 
according to the simulation scenarios such as memory access 
test, flash interface, program download sequence, peripheral 
function test. In order to simulate the scenarios, simulation 
models for external SRAM and flash memory are 
implemented.  

Especially the top-level simulation for LIN controller is a 
key feature. The LIN BFM is migrated to top level 
simulation for verifying communication functions. The 
Cortex-M0 is programmed to implement a LIN node 
described in the LDF and the LIN network is implemented 
through the LIN BFM. Fig. 6 shows the simulation result for 
frame header reception and response transmission of the LIN 
controller. A frame header including the break field, sync 
field, and PID field is inserted through the LIN receiver pin. 
When the frame header is received, the register informs 
current state of LIN communication and samples the receive 
data. The LIN controller responds to the frame header when 
the PID field is valid to the register configurations.  

A LIN bus is implemented in the simulation environment, 
therefore the output of LIN transmitter signal is reflected to 
the LIN receiver signal. The simulation results confirm the 
integrity of the design. 

V. CHIP IMPLEMENTATION AND RESULTS  

A. Chip layout  

Fig. 7 shows the chip layout of the processor designed by 
the TSMC 180nm process. The designed processor includes 
a Cortex-M0 core, debug modules, peripherals such as 
UART, SPI, Timer and GPIO, and the LIN controller as a 
communication controller. Internal SRAM is not included in 
the design. Instead, an external SRAM is employed for code 
memory and data memory. The chip size is 3.4𝑚𝑚𝑚𝑚 × 3𝑚𝑚𝑚𝑚 
and the core size is 1785𝑢𝑢𝑚𝑚 × 1385𝑢𝑢𝑚𝑚 . The operating 
frequency of the processor is 24MHz, and each operating 
voltages of the standard cell and IO cell are 1.8V and 3.3V.  
 
B. PCB prototyping  

A prototype PCB including the implemented chip (HM1), 
external SRAM, Flash memory, LIN PHY, and signal ports 
is designed as shown in Fig. 8. The flash memory receives 
instructions which compiled by Cortex-M0 compiler 
through the JTAG port. Additionally, the JTAG port is 
employed for debugging of the HM1, reading the internal 
registers and memory values of the specific addresses. When 
the PCB board powered-on or reset, the HM1 reads program 
instructions from flash memory and stores the instructions 
into the external SRAM. After a booting sequence, the HM1 
performs the program sequentially by accessing the external 
SRAM. The LIN PHY employed for the physical layer of 
LIN communication, and the 12V connecter provides power 
to the LIN PHY.   

 

 
Fig. 5. Compile environment for top simulation.  

Fig. 7. Chip layout 

 
Fig. 6. Simulation result of LIN controller. 

 
Fig. 8. Prototype PCB. 
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C. Verification  

In order to verify the designed processor and LIN 
controller, the verification environment is implemented as 
shown in Fig. 9. The prototype PCB, LIN interface, 
hardware scope, and NXP automotive development board 
are employed. Vector-VN1630A and PicoScope-5000 are 
employed as a LIN interface and hardware scope. The 
hardware scope provides a LIN physical layer and captures 
a LIN frame sampled through the LIN bus. A LIN network 
is implemented with the LIN interface, chip test board and 
NXP development board. The LIN interface links a LDF to 
Vector-Canoe software and provides virtual LIN nodes 
described in the LDF. Therefore, the LDF network condition 
is migrated from simulation to verification. A target LIN 
node that is specified in the LDF is implemented with the 
chip test board by programming the designed processor. 
Another LIN node in the LDF is implemented with the NXP 
development board. The NXP development board supports 
LIN communication functions and physical layers. By 
employing the NXP board as a LIN node, we demonstrated 
that the designed processor is able to communicate with the 
commercial boards. Other LIN nodes in the LDF are 
modeled with virtual LIN node. We verified that the 
designed processor successfully detects valid LIN headers 
and responds to the headers exactly. The captured waveform 
is presented in Fig. 9. 
 

TABLE I. Area and power report. 
 

Block 
Area (𝑢𝑢𝑚𝑚2) Power (mW) 

Samsung 
28nm 

TSMC 
180nm 

Samsung 
28nm 

TSMC 
180nm 

Cortex-M0 5,478 178,812 0.203 1.450 

LIN Ctrl. 2,102 39,140 0.0819 1.972 

UART 476 9,744 0.0207 0.549 

SPI 253 4,623 0.0115 0.275 

Timer 710 7,468 0.0286 0.377 
Total 9,019 239,787 0.346 4.623 

 

D. Chip specification  

    Table 1 presents the area and power estimation of the 
designed processor according to the TSMC 180nm CMOS 
process and Samsung 28nm CMOS process. Area and power 
for the detailed modules commonly included in the 
processors are compared. The design area of the Cortex-M0 
core is measured as 5,478𝜇𝜇𝑚𝑚2 for the Samsung 28nm and 
178,812𝜇𝜇𝑚𝑚2 for the TSMC 180nm. As the core design in 
TSMC 180nm includes additional logic such as debug and 
debugger access port (DAP) modules, the area of Samsung 
28nm process takes 3.06% of the design area compared to 
TSMC 180nm process. The LIN controller, UART, SPI, and 
Timer modules include the same design in both processes, 
and Samsung 28nm process accounts for an average design 
area of 5.81% compared to TSMC 180nm process. 

To compare the power consumption of the designed 
processor, the power is measured using design compiler (DC) 
based on a saif of the simulation. We employ a vectored 
power estimation to estimate the power in a power intensive 
situation. The saif includes the toggle information according 
to the simulation results. The core consumes 1.45mW in the 
TSMC 180nm process and 0.203mW in the Samsung 28nm 
process. The Samsung process power result occupies 14% of 
power consumption compared to TSMC process. The total 
power values including core, LIN controller, UART, SPI and 
timer are estimated 0.346mW, 4.623mW according to the 
process. As a result, Samsung 28nm process consumes 7.48% 
of power compared to the TSMC 180nm process in average. 

VI. CONCLUSION 

   In this paper, a communication processor for local 
network is proposed. The processor includes a Cortex-M0 
core, dedicated LIN controller and peripherals for achieving 
performance and power budget. To verify the design, block-
level simulation and top-level simulation are performed. 
Simulation models such as bus functional model, external 
SRAM and flash memory are implemented. The simulation 
model implements LIN network scenarios by employing a 
LDF which includes LIN nodes, frame definitions, and 
network schedules. The LIN network scenarios are migrated 
to physical demonstration to synchronize results. The 
proposed processor is successfully demonstrated in ASIC 
level.  

The experimental environment is implemented with a test 
PCB board, LIN interface, hardware scope, and NXP 
development board. We verify the functionality of LIN 
communication by capturing LIN frames through the 
experimental environment.  

The designed processor is fabricated with TSMC 180nm 
CMOS process. We compared the design area and power 
with Samsung 28nm process.  
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