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Abstract – The Discrete Cosine Transform (DCT) is often 
applied in a sliding window setting. While sliding DCT (SDCT) 
algorithms take advantage of the computational redundancy 
inherent from the overlap between consequent processing 
windows, the recursive computation nature imposes a 
fundamental limit on realizable throughput. This study 
presents a high-throughput FPGA implementation of the SDCT 
algorithm using look-ahead pipelining. A look-ahead 
transformation of degree two is applied to the original SDCT 
recursion formula resulting in a threefold reduction of the 
iteration bound. The resulting maximum clock frequency on a 
Xilinx FPGA device is increased 2.1x (from 58.4 MHz to 123.4 
MHz) by carefully retiming the look-ahead pipeline registers 
and inserting additional pipeline registers in feed-forward 
cutsets of the signal-flow graph. 
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I. INTRODUCTION 

The Discrete Cosine Transform (DCT) is one of the most 
widely used digital signal processing technique with many 
useful properties such as self-orthogonalization and energy 
compaction, which follows from the fact that DCT closely 
approximates the optimal Karhunen-Loeve transform [1]. 
Furthermore, its data independent nature has led DCT to be 
utilized in various fields including audio signal processing, 
image processing, spectral analysis, and adaptive signal 
processing [2-4]. 

DCT is often applied in a sliding window setting like other 
signal processing algorithms [5]. Some examples of sliding 
DCT (SDCT) include spectral analysis of non-stationary 
data and transform domain adaptive filtering [4]. In sliding 
window processing, a window of fixed size is shifted one 
sample at a time over the input domain sequence 𝑥𝑥(𝑛𝑛) as 
shown in Fig. 1. While fast DCT algorithms of complexity 
𝑂𝑂(𝑁𝑁log𝑁𝑁) [6] that are similar to the fast Fourier transform 
exist, they do not take advantage of the inherent redundancy 
due to data overlap between consequent processing 

windows. The SDCT algorithm [4] utilizing this inter-
window dependency results in recursive computations and is 
usually more efficient [7-10]. 

An important drawback of the SDCT algorithm as well as 
other recursive algorithms is that the inherent iteration 
bound [11] prevents arbitrary pipelining and restricts high 
throughput implementations for single data-stream 
applications. However, this limit can be overcome by using 
the look-ahead transformation technique that has been used 
in implementing infinite impulse response (IIR) digital 
filters [11]. This approach is orthogonal to the various 
formulations found in the literature targeting reduced 
computation [7-10]. 

In this paper, we present a high-throughput FPGA 
implementation of the SDCT algorithm using look-ahead 
pipelining. In section II, the look-ahead transformed SDCT 
algorithm is shown after the original SDCT algorithm, 
together with various design details. FPGA synthesis results 
and analytical discussions are given in section III, which is 
followed by concluding remarks in section IV. 

 
 

II. DESIGN METHODOLOGY 
 

A. Sliding DCT algorithm 

M-point DCT is defined as follows [4]: 
 

 𝑋𝑋𝑚𝑚 = 𝑘𝑘𝑚𝑚 � 𝑥𝑥(𝑖𝑖) cos�
𝑚𝑚(𝑖𝑖 + 1/2)𝜋𝜋

𝑀𝑀
�

𝑀𝑀−1

𝑖𝑖=0

 (1) 

 
for 𝑚𝑚 = 0, … ,𝑀𝑀 − 1, where the constant 
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Fig. 1. Sliding window processing. 
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 𝑘𝑘𝑚𝑚 = �1/√2, 𝑚𝑚 = 0
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

. (2) 

 
This particular form is referred to as DCT-II, and is the most 
commonly used DCT type among several variants. 

In the sliding window setting, the SDCT sequence 
corresponding to the M-point input domain sequence 
[𝑥𝑥(𝑛𝑛), 𝑥𝑥(𝑛𝑛 − 1), … , 𝑥𝑥(𝑛𝑛 − 𝑀𝑀 + 1)] becomes 
 
𝑋𝑋𝑚𝑚(𝑛𝑛) = 

(3) 
   𝑘𝑘𝑚𝑚 � 𝑥𝑥(𝑖𝑖) cos�

𝑚𝑚(𝑖𝑖 − 𝑛𝑛 + 𝑀𝑀 − 1/2)𝜋𝜋
𝑀𝑀

�
𝑛𝑛

𝑖𝑖=𝑛𝑛−𝑀𝑀+1

. 

 
After some manipulation [4], we get 
 

 𝑋𝑋𝑚𝑚(𝑛𝑛) =
1
2
𝑘𝑘𝑚𝑚(−1)𝑚𝑚𝑊𝑊2𝑀𝑀

𝑚𝑚/2𝑃𝑃𝑚𝑚(𝑛𝑛) (4) 

 
where the constant 
 

 𝑊𝑊2𝑀𝑀 = exp �−
𝑗𝑗2𝜋𝜋
2𝑀𝑀

� , (5) 

 
and 
 
 𝑃𝑃𝑚𝑚(𝑛𝑛) = 𝑃𝑃𝑚𝑚

(1)(𝑛𝑛) + 𝑃𝑃𝑚𝑚
(2)(𝑛𝑛) (6) 

 
with the following recursions: 
 

𝑃𝑃𝑚𝑚
(1)(𝑛𝑛) = 𝑊𝑊2𝑀𝑀

𝑚𝑚 𝑃𝑃𝑚𝑚
(1)(𝑛𝑛 − 1) 

(7) 
      +𝑥𝑥(𝑛𝑛) − (−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀), 
 

𝑃𝑃𝑚𝑚
(2)(𝑛𝑛) = 𝑊𝑊2𝑀𝑀

−𝑚𝑚𝑃𝑃𝑚𝑚
(2)(𝑛𝑛 − 1) 

(8) 
      +𝑊𝑊2𝑀𝑀

−𝑚𝑚�𝑥𝑥(𝑛𝑛) − (−1)𝑚𝑚𝑥𝑥(𝑛𝑛 −𝑀𝑀)�. 
 

Fig. 2 denotes the block diagram representation of the 
SDCT algorithm. Note that a multiplicative factor 𝛽𝛽  is 
applied to each 𝑧𝑧−1  operation [4]. The raw SDCT with 
𝛽𝛽 = 1 is marginally stable due to the position of its poles 
exactly on the unit circle in the z-plane. Round-off errors 
may cause instability by pushing the poles outside the unit 

circle. Choosing a suitable 𝛽𝛽 < 1  can alleviate this 
problem by shifting the poles slightly inside the unit circle, 
with small approximation errors. Equation (7) and (8) are 
modified accordingly as follows: 
 

𝑃𝑃𝑚𝑚
(1)(𝑛𝑛) = 𝛽𝛽𝑊𝑊2𝑀𝑀

𝑚𝑚 𝑃𝑃𝑚𝑚
(1)(𝑛𝑛 − 1) 

(9) 
      +𝑥𝑥(𝑛𝑛) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 −𝑀𝑀), 
 

𝑃𝑃𝑚𝑚
(2)(𝑛𝑛) = 𝛽𝛽𝑊𝑊2𝑀𝑀

−𝑚𝑚𝑃𝑃𝑚𝑚
(2)(𝑛𝑛 − 1) 

(10) 
      +𝑊𝑊2𝑀𝑀

−𝑚𝑚�𝑥𝑥(𝑛𝑛) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀)�. 
 
Note that the left-front part of Fig. 2 computing the common 
𝑥𝑥(𝑛𝑛) − (−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀)  expression can be shared within 
the groups of even and odd values of the transform domain 
index 𝑚𝑚. 

The iteration bound of the SDCT algorithm is easily 
identified to be the sum of one (real) multiplication delay and 
two addition delays, since the computational path through 
complex multiplication consists of one multiplication and 
one addition. Throughput or sample rate higher than this 
iteration bound is infeasible no matter what amount of 
pipelining is applied. 
 
B. Look-ahead transformation 

The look-ahead transformation technique [11] has been 
used in implementing IIR digital filters to reduce their 
iteration bound. It can be applied to SDCT as well since 
SDCT shares the recursive computation structure with IIR 
filters. 

The recursion formulas (9) and (10) are expanded two 
times as follows: 
 

𝑃𝑃𝑚𝑚
(1)(𝑛𝑛) = 𝛽𝛽3𝑊𝑊2𝑀𝑀

3𝑚𝑚𝑃𝑃𝑚𝑚
(1)(𝑛𝑛 − 3) 

(11) 
 +𝑥𝑥(𝑛𝑛) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀) 

 +𝛽𝛽𝑊𝑊2𝑀𝑀
𝑚𝑚 �𝑥𝑥(𝑛𝑛 − 1) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀 − 1)� 

 +𝛽𝛽2𝑊𝑊2𝑀𝑀
2𝑚𝑚�𝑥𝑥(𝑛𝑛 − 2) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀 − 2)�, 

 

𝑃𝑃𝑚𝑚
(2)(𝑛𝑛) = 𝛽𝛽3𝑊𝑊2𝑀𝑀

−3𝑚𝑚𝑃𝑃𝑚𝑚
(2)(𝑛𝑛 − 3) 

(12) 
 +𝑊𝑊2𝑀𝑀

−𝑚𝑚�𝑥𝑥(𝑛𝑛) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀)� 

 +𝛽𝛽𝑊𝑊2𝑀𝑀
−2𝑚𝑚�𝑥𝑥(𝑛𝑛 − 1) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀 − 1)� 

 +𝛽𝛽2𝑊𝑊2𝑀𝑀
−3𝑚𝑚�𝑥𝑥(𝑛𝑛 − 2) − 𝛽𝛽𝑀𝑀(−1)𝑚𝑚𝑥𝑥(𝑛𝑛 − 𝑀𝑀 − 2)�. 

 
Comparing the resulting block diagram shown in Fig. 3 to 
the original block diagram in Fig. 2, it is easily seen that the 
number of delay elements in the critical loop has increased 
from one to three, which is due to the two-time expansion 
applied in the recurrence relations (11) and (12). Since the 
combinational computation delay along the critical loop 
remains the same, the resulting iteration bound decreases 
threefold, hence a three-time increase of potential 
throughput. 

 
Fig. 2. Block diagram of the SDCT algorithm. 
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C. Design details 

A pipeline architecture of the SDCT algorithm with look-
ahead transformation has been designed and is shown in Fig. 
4. A total of eight pipeline stages are introduced to enjoy the 
reduced iteration bound and achieve high throughput. Four 
pipeline cuts are inserted each in the upstream and 
downstream of the critical loop. Note that two among the 
three delay elements in the critical loop are retimed in the 
forward direction. Furthermore, redundant delay elements 
are merged into the delay elements with identical input-
output connections. 

While two delay elements are shown together after the 
fully complex multiplication operations in Fig. 4, one is 
actually placed inside the complex multiplication—between 
the real multiplication and addition. Overall, to achieve high 
throughput, every pipeline delay element is placed such that 
no more than a single real arithmetic operation is performed 
between each connected delay element pair. 

Fixed-point bit widths for every signal are also indicated 
in the block diagram using the Q notation. For example, Q7.8 
means a total bit width of 15 with seven bits for the integer 
part including the sign bit, and eight bits for the fraction part. 
The fixed-point configuration inside the complex multiplier, 
between the real multiplier and adder, simply follows that of 
the complex multiplier output. 

Saturation and rounding are applied whenever required. 
Saturation arithmetic is chosen since wrapping around for 

overflows and underflows usually results in notable 
performance degradation in many communication and signal 
processing applications. Rather than simple truncation, 
convergent rounding is performed to suppress quantization 
noise bias; numbers are rounded to the closest representable 
number with precedence of even numbers in the case of tie. 
Further fine grain retiming is performed to minimize the 
negative impact of saturation and rounding on the critical 
path delay. 

III. RESULTS AND DISCUSSIONS 

The designed SDCT look-ahead pipeline architecture has 
been implemented on a Xilinx Artix-7 FPGA device, 
xc7a200tlfbg484-2L, using Vivado software. Only synthesis 
is performed since the designed SDCT is a subblock of a 
larger system with a more IO ports than the target device 
pins. 

For comparison purposes, a conventional SDCT pipeline 
architecture has also been designed, which is shown in Fig. 
5. Two pipeline stages are introduced to improve throughput 
and reveal the computational loop that determines the 
iteration bound as the critical path of the design. 

Synthesis timing results, denoted in Table I, show that the 
critical path delay is reduced from 17.2 ns to 8.1 ns, and the 
maximum clock frequency increases accordingly from 58.3 
MHz to 123.4 MHz. The aforementioned potential threefold 
improvement in the iteration bound is only possible for both 
zero clock-to-q delay and setup time. Considering the actual 
nonzero clock-to-q delay and setup time, together with the 
practical constraints in placing the pipeline registers, the 
resulting 2.1x throughput improvement is considered quite 
reasonable. 

FPGA resource allocation results are denoted in Table II. 
Overhead incurred by look-ahead pipelining can be seen. 
The number of slice registers increases significantly. In 
addition to the higher degree of pipelining, this is due to fine 
grain retiming of the pipeline registers after real 

 
Fig. 3. Block diagram of the SDCT algorithm with look-ahead 
transformation of degree two. 

 
Fig. 4. Block diagram of the designed SDCT architecture with look-ahead transformation; pipelining and retiming also applied. 
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multiplications. These registers have been placed in front of 
the convergent rounding operations auxiliary to the 
multiplication operations—where bit widths are large—to 
maximally balance the delay of register-to-register paths. 
The numbers of slice look-up tables (LUTs) and digital 
signal processing (DSP) blocks, however, increase only 
moderately. Although the number of multiplication 
operations incurred by look-ahead transformation is large, 
each such multiplier in Fig. 4 has one multiplicand constant 
and the other multiplicand common with a large number of 
other multipliers. This computational structure is identical to 
the multiplier block structure of transposed form finite 
impulse response (FIR) filters, which is highly redundant 
and can be significantly optimized by FIR filter synthesis 
techniques [12]. It is supposed that Vivado software has 
taken advantage of this optimization opportunity. 

As each logic slice of an Artix-7 device contains four 
LUTs and eight flip-flops [13], the required logic slice 
counts of the conventional and proposed design are 3845 and 
5664, respectively. Considering only these logic slices, 
together with the critical path delays, the area-delay product 
(ADP) shows a 1.44x improvement. Since the ADP 
improvement considering only DSP slices is 1.93x, the total 
ADP improvement can be determined as a number between 
these two, depending on the area ratio of logic and DSP 
slices. 

 

Fig. 6 shows some simulation results on white Gaussian 
test input data. Block DCT refers to DCT processing 
according to (1), i.e., without sliding window recursions. 
This simulation is done in floating-point MATLAB, in order 
to be used as golden reference. HDL fixed-point simulation 
of the designed SDCT look-ahead pipeline architecture as 
well as fixed and floating-point conventional SDCT 
simulations are well verified to be correct. 

Comparison of fixed-point accuracy of the conventional 
SDCT and the look-ahead transformed SDCT architectures 
is denoted in Fig. 7. Root-mean-square error (RMSE) 
relative to floating-point SDCT is calculated, with mean over 
all transform domain indexes. Interestingly, the look-ahead 
transformed SDCT shows much lower RMSE than the 
conventional SDCT. This RMSE margin can be used to 
reduce the required FPGA resource of the look-ahead SDCT 

 
Fig. 6. Block diagram of the conventional SDCT pipeline architecture. 

Table II. Allocated FPGA resource comparison 

 Conventional 
SDCT pipeline 

SDCT with 
look-ahead pipeline 

Slice LUTs 15380 22653 

Slice registers 1907 18350 

DSPs 244 268 

 

Table I. Critical path delay and throughput comparison. 

 Conventional 
SDCT pipeline 

SDCT with 
look-ahead pipeline 

Critical path delay 17.2 ns 8.1 ns 

Throughput 58.3 MHz 123.4 MHz 
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pipeline architecture by reducing fixed-point bit widths, or 
to improve throughput even further by employing a simpler 
rounding scheme such as rounding half up toward positive 
infinity. 

IV. CONCLUSION 

In this study, a high-throughput FPGA implementation of 
the SDCT algorithm using look-ahead transformation has 
been demonstrated. The proposed design achieves a 
maximum clock frequency improvement by 2.1x, from 58.4 
MHz to 123.4 MHz, compared to the conventional SDCT 
pipeline architecture, which is reasonably close to the 
theoretical threefold reduction of the iteration bound. 
Various design details including fixed-point configuration 
and simulation, pipeline retiming, and FPGA synthesis 
results have been presented, together with detailed analytical 
discussions. 
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