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Abstract — In this paper, the specifications of the previous

biopotential amplifiers are reviewed in terms of maximizing the
SNR. Based on the analysis, it is found out that the most
important requirement for maximizing the SNR is the
robustness to common-mode interference. In order to enhance
both tolerance to CMI and T-CMRR simultaneously, a
common-mode charge-pump (CMCP) and adaptive CMI
cancelling loop are proposed in our previous work, where
CMCP absorbs displacement current from the CMI source and
adaptive CMI cancelling loop minimize the CMI shown at the
amplifier output, respectively. Especially, the paper presents an
analysis of the adaptive common-mode cancellation technique
using an LMS algorithm that is dedicated for removing
50/60Hz noise during the biopotential recording.
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1. INTRODUCTION

Long-term monitoring of electrocardiogram (ECG) is
essential in diagnosing cardiovascular diseases such as
paroxysmal atrial fibrillation, unstable or variant angina.
However, acquiring the ECG signal under practical scenarios
is not an easy task due to many disturbances from the
recording environment. As depicted in Fig. 1(a), the
biopotential is normally recorded via an impedance network
which consists of contact impedance (ZgL) and input
impedance (Zi). Besides, the common-mode of the input
varies due to the coupling from external power line (Vemr
and Ccmi), which is often referred as common-mode
interference (CMI). With these environmental issues, the
signal passes through an amplifier, which also adds intrinsic
noise and nonlinear distortion and shown at the output. The
effect of these non-idealities on SNR can be classified into
attenuation, CM-DM conversion, non-linearity and intrinsic
noise as shown in Fig. 1(b). The attenuation is due to voltage
division itself from the impedance network at the input. The
intrinsic noise (i.e. thermal and flicker noise) is generated
from each circuit components and added to the signal while
amplification. The non-linearity is also added due to a
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disturbed biasing of the transistors by a large common-mode
interference [1-2]. The CM-DM conversion is added to the
signal due to intrinsic CMRR of the IA and imbalanced
impedance network at the input (i.e. Ziv and asymmetric
Zg1s) for each input nodes. The normalized amount of CM-
DM conversion including these two effects are often
described using the term total-CMRR (T-CMRR). The T-
CMRR for a conventional IA shown in Fig. 1(a) can be
represented as follows:
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and it can be seen that T-CMRR can be enhanced when an
IA that have both large CMRR (CMRRIA) and high input
impedance (ZIN)are used. Note that the case when is
mismatch between the contact impedances (4Zg.) are small
is not considered since it is a variable that is set by the
environment. In summary, the SNR of a biopotential
amplifier can be represented by the following equation:
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Fig. 1. (a) Sources of non-idealites that affects biopotential signal. (b)
Effects of nonidealites on SNR.
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Fig. 2. Example scenarios for two-electrode ECG recording for calculation
of SNR.

where a is the attenuation factor, S is the signal, N is
the intrinsic noise, C is the CM-DM conversion and D
is the nonlinear distortion. To remove each SNR-
degrading factors in the above equation, it is well-
known that the following specifications should be
improved. First, the input impedance should be
increased to prevent attenuation and CM-DM
conversion. Second, T-CMRR should be improved by
boosting both input impedance and CMRR of the 1A itself.
Third, the tolerance to CMI should be enhanced to withstand
the nonlinear distortion due to CMI. Forth, the input-referred
noise should be reduced. The primary among these
requirements can be changed for each biopotential recording
scenarios so that SNR is maximized. For example, we can
consider a biopotential amplifier for two-electrode ECG
recording using dry electrodes shown in Fig. 2(a) [2]. As can
be seen in the figure, since the source impedance is 1M and
input impedance is 20M at DC, is 0.95. Next, since the
tolerance to CMI is 15Vpe and the CMI is 10Vep, the
nonlinear distortion due to CMI is negligible thanks to CM
suppressing loop (i.e., D = 0). The intrinsic noise is N =
1.64uVvrms when input referred. However, since the T-
CMRR of the overall system is 66dB, CMRR of the overall
system is 66dB, the CM-DM conversion is C = 5mV when
input-referred. From the above calculation, we can easily list
the specification in order of importance: tolerance to CMI,
T-CMRR, intrinsic noise and input impedance (in terms of
attenuation). Another example that can be considered is

an active electrode with conventional three-electrode
configuration [3] as shown in Fig. 2(b). Assuming the same
setting with the previous two-electrode case, the calculated

factors are 0=0.99, C = 1ImV , N = 1.75pVrms and D = 0.

27

http://www.idec.or.kr

Note that the T-CMRR varies from 42dB to 102dB due to
contact impedance variation and distortion by CMI is
negligible thanks to the biasing electrode. The priority of the
specifications can be listed just like the previous example:
T-CMRR, intrinsic noise, input impedance and tolerance to
CMI. For both cases, it can be seen that the T-CMRR have
first or second priority since it is typically much larger than
the input-referred noise.

Il. REVIEW OF PREVIOUS TECHNIQUES IN PERSPECTIVE OF SNR

For many years, various techniques are developed in order
to remove the above nonidealities. The flicker noise is often
removed by chopping. However, the input impedance is
degraded, which result in T-CMRR degradation or signal
attenuation. In order to enhance input impedance for these
reasons, methods like active shielding, positive feedback or
pre-charging are proposed. These techniques are valid in
terms of preventing T-CMRR degradation [4], but not useful
in terms of attenuation since the added circuit increases noise
so that the SNR is maintained [5]. Note that T-CMRR is
often limited by the impedance network nowadays, since an
IA with CMRR larger than 100dB can easily be achieved
using current-balanced IA or the averaging effect of the
mismatch due to chopper [4]. To prevent the non-linearity by
CMI (i.e. enhance the tolerance to CMI), current-absorbing
circuit like common-mode charge pump (CMCP) or current
sources are added at the input node [6]. However, these
techniques degrade T-CMRR due to the mechanism shown
in Fig. 3. Since the current-absorbing circuit generates
common-mode current via each electrode impedances, the
contact impedance mismatch (AZgp) results in an additional
CM-DM conversion with an amount of IcvixAZgr, which is
a critical source that degrades T-CMRR.
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,Low noise

Low power
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:JSSC 2017
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Fig. 3. Comparison of specifications for recent prior biopotential amplifiers.

In [6], the input impedance is boosted and tolerance to
CMI is enhanced. However, the T-CMRR is not measured
and moreover, the tolerance to CMI is still insufficient for
cutting-edge applications like two-electrode ECG recording.
In [4], the input impedance in common-mode is boosted and
as a result, large TCMRR is achieved. However, since the
chopping is not used, the noise is large at low frequency and
tolerance to CMI is limited by the main operational
transconductance amplifier (OTA), which makes the
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amplifier not suitable for two-electrode ECGs. In [2], the
tolerance to CMI is enhanced with acceptable power and
noise performance. However, the T-CMRR is still low due to
the degradation by the mechanism described above.

The basic mechanism of the design that addresses the
above issue is already presented in [1]. In this paper, the
detailed analysis on LMS algorithm and design
consideration are provided.

I1l. DESIGN OF LMS ALGORITHM

A. Review of the previous work.

The schematic and timing diagram of the adaptive T-
CMRR enhancing loop is shown in Fig. 4, where the current-
absorbing circuit is implemented in the discrete-time domain
using a common-mode charge pump (CMCP) [5]. The level
shifts by ®cmi via capacitor Ccr is used for CMI reduction.
The level shifts in DM (®ar, ®arp and their inverses) are
generated by multiplying ®cmi, @cmip With its appropriate
signs from LMS and CM-DM-conversion is cancelled by the
level shifts in DM via capacitor arrays (Cor and CpeD). To
realize the LMS algorithm for adaptive CMI cancellation, we
must be able to monitor the CMI. The CMI is reconstructed
from ®CMI, which contains the amount and direction of
level shifts applied to CMI. In addition, both the gain and
phase must be controlled in the cancellation loop, which is
implemented using in- and quadrature-phase of the
reconstructed CMI (ie., V’ewmr and V’cwip). The
reconstructed CMI and the output voltage are 1b quantized,
multiplied, and accumulated for a sign-sign LMS algorithm
that controls Cpr and Cpro. Note that nonlinearity of C-
DACs or mismatch between each Ces have little effect on T-
CMRR as these non-idealities are already included in LMS
settling.
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Fig. 4. IA with common-mode charge pump and adaptive CM cancellation.
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B. Operation of quadrature LMS algorithm

Since both the gain and phase of the CMI at the output
changes, it is obvious that both of them need to be tracked,
which is done via quadrature-domain. As you asked, we
simulated two scenarios: LMS with | phase-only and LMS
with 1-Q phase using MATLAB and the results are shown in
the figures shown below. As shown in the first figure, the
LMS is not effective for canceling out the Q-phase 60Hz
noise when only I-phase LMS is enabled, but the LMS can
remove all the noise when both I-phase and Q-phase are
enabled.

Estimated gain
Output

Time (s)
Fig. 5. MATLAB simulation result of I-phase-only LMS
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Fig. 6. MATLAB simulation result of I-Q phase LMS

C. Stability of the LMS loop

Regarding the stability of the LMS loop, the stability of a
general LMS loop is determined by the inequality shown
below.

o<u<

Amax

where p is the coefficient-updating step and 4,4, is the
greatest eigenvalue of the autocorrelation matrix of the noise.
The meaning of the above equation is that p should be
smaller enough so that the sign which was negative at the n'"
sample would not be the opposite direction at the n+1™
sample without enough cancellation of the noise. In the
proposed loop, the condition described above is well
satisfied by keeping the resolution of the capacitor array to
be small enough.

D. Linearity of the capacitor DAC

In order to maximize T-CMRR, the capacitor DAC that
consists Cpr and Cprp should have good resolution. The
capacitor DAC consists of a thermometer-coded 9-bit
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capacitor DAC with 500aF LSB. In this work, the linearity
of the capacitor affects the operation if the input versus
output is not monotonic, but has no effect if it is monotonic,
even if it is nonlinear. The behavior can be explained by
investigating the existence of local minimum, that the
gradient descent converges into wrong solution. The
amplitude of the output given by LMS can be described as
follows:

Vour| = —|(0rreat — Wicap) + i(0rimg — Wacar)| - [Veuil-

S is the mismatch given by the circuit that has to be removed
and Wicap and Wacap is the amplitude for subtraction
defined by capacitor DAC, not the output code of the LMS
algorithm itself. In the below simulation results (From Fig.
6 to Fig. 8.), distortion of Vour due to non-linearity is
observed for three cases: without any non-linearity, non-
linear but monotonic and non-linear an non-monotonic.
From the figures, it can be seen that there are no local
minimum for Vour when the DAC is monotonic (Fig. 6 and
Fig. 7), but the local minimum are generated when the DAC
is not monotonic as can be seen in Fig. 8 and it can also be
seen that the convergence may be affected by the initial
condition where the gradient descent begins. In the paper,
the capacitor DAC may lose its monotonicity due to the
process. However, above limitation is expected to be
addressed by reducing LSB by using smaller process.
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Fig. 6. Normalized output from quadrature LMS versus W1 and W2 for
ideal capacitor DAC. (a) Input code versus output (b) 3-dimentional
diagram for W1, W2 and resulted output.
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Fig. 7. Normalized output from quadrature LMS versus W1 and W2 for
non-linear, monotonic capacitor DAC. (a) Input code versus output (b) 3-
dimentional diagram for W1, W2 and resulted output.

V. DESIGH CONSIDERATIONS OF IA WITH CMCP AND
ADAPTIVE CM CANCELATION

A. Parasitic capacitance at the input node

The parasitic capacitance does not affect the performance
of CMSL. Reflecting the parasitic capacitors, Fig. 2. in [2]
can be changed as Fig. 8. In this scenario, the equation (2)
and (3) in [2] is changed as follows.

Viem [n]C: iem[n — 1] = r'Veoyp[n — 1]+
cMI _ _
Comt +CPAR(VCMI [n] = Ve [n — 1])
7"’ o 2Cf

CcmitCpaArR+2CF

The above result means that there is an attenuation when
Ve is delivered to Viem and when the level shift by CMSL
is delivered to Vicm. In order to see the effect of the above
changes to the tolerance to CMI, the tolerance is calculated
again with the same idea presented in [4].

2C, )
Jemer Comr + Cpag +2Cx PP

Cemr dVCMI)

> max (
Comr + Cpap  dt
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Fig. 8. Normalized output from quadrature LMS versus W1 and W2 for
non-linear, nonmonotonic capacitor DAC. (a) Input code versus output (b)
3-dimentional diagram for W1, W2 and resulted output.
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In the above equation, since Ccwm is typically larger than
200pF and Cr is 1.6pF, the Cg-related term in the above
equation can be assumed to be very small. And if Cr -related
term is removed, the tolerance remains the same regardless
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of Cpar. This means that the parasitic capacitance does not
affect the performance of CMSL. The above result can be
explained intuitively as follows: since the displacement
current from the CMI source from the power line and the
absorbing behavior of the current by CMSL is not changed
due to Cpar, there is no change in CM-suppressing operation
and the tolerance remains the same.

B. Instrumentation amplifier

In this work, the capacitively-coupled IA with a chopper
is adopted as a main amplifier. The reason why we have
concluded using CCIA with chopper is that the CMRR of the
IA can be improved by not only using CBIA, but also
adopting chopper to CCIA and the CCIA with chopper does
not require external capacitor for DC block, unlike CBIA.
Improving the CMRR of the IA is too important in our work
since there may exist an additional intrinsic tone in common-
mode as described in [4].

C. Timing generation of CMCP

InFig. 4, ¢, isshorterthan ¢, (duty=12.5%) since the
operation during these two phases are completely different.
In ¢,, the buffer should charge Cr so that its top plate
becomes the same as the input node and it requires enough
settling time. Thus, we have scheduled a large portion of the
time per a cycle to give enough settling time to the buffer.
By contrast, in ¢, the level shift is induced to the input
node by toggling the output of the logic gates, which does
not require much time compared to the capacitor-charging
operation in ¢,. Thus, the time for ¢; is set to be much
less than ¢,.

V. MEASUREMENT RESULTS

The proposed work is implemented using 180nm CMOS
process. The cancellation of 60Hz noise is measured using
the proposed chip and the result is shown in Fig. 11. It can
be seen that the TCMRR is enhanced by the proposed work
with the techniques described above. In order to
quantitatively measure the enhanced TCMRR, the TCMRR
is enhanced using the LMS with and without the proposed
technique and the TCMRR enhancement of at least 50dB is

measured.
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Fig. 11. Cancellation of 60Hz noise using the proposed work.
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Fig. 12. Measured TCMRR enhancement using the proposed technique.

VI. CONCLUSION

In this work, the details and consideration for designing
the common-mode charge pump with adaptive CM
cancellation is provided. The above results shows that the
stability of the LMS loop is basically not an issue and the
linearity of the capacitor DAC should be designed to be
monotonic at least. In addition, the tolerance to CMI
including the parasitic capacitance, instrumentation
amplifier and timing generation method is provided for the
readers to adopt the adaptive CM cancelling technique for
the future users of the technique. The measurement results
support that the TCMRR enhancement can be achieved
using the proposed work with the described details.
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