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Abstract - SRAM-based Field Programmable Gate Arrays 

(FPGAs) are more widely used compared to Flash-based and 

anti-fuse based FPGAs in various industries. One disadvantage 

of the SRAM-based FPGA is that SRAM is natively volatile and 

thus it requires additional nonvolatile memory to store the 

netlist information of the circuit outside the FPGA. When the 

FPGA is powered on, the bitstream file is transferred from the 

external nonvolatile memory to the SRAM-based FPGA. The 

secure issues arise if the bitstream is modified or corrupted by 

attacker resulting in a fatal problem in the circuit. Therefore, 

reverse engineering that converting a bitstream into an internal 

netlist is necessary to find such harmful modification. In this 

paper, we describe the overall process of reverse engineering 

based on ISE design tools in details. According to the 

experimental results, the proposed reverse engineering tool can 

recover 88% internal circuit as for the example of 64-bit LFSR 

design.  
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I. INTRODUCTION 

 

Application-specific integrated circuit (ASIC) must be 

designed to satisfy the specifications of application systems. 

Thus, ASIC requires considerable time and cost to build the 

system, and once the circuit is produced as a chip, it cannot 

be modified. To mitigate this disadvantage of ASICs, field-

programmable gate arrays (FPGAs) are used in several 

industries. FPGAs have the advantage of parallel and high-

speed processing because the circuit can be added or 

changed freely even after the circuit has been configured and 

the digital circuit operates directly [1].  

FPGAs are classified into SRAM-based, FLASH-based, 

and FUSE-based FPGAs according to the fabrication 

method, and the SRAM-based FPGA is most widely used 

owing to advantages in area, process, and speed [2]. 

However, the SRAM-based FPGA is volatile and requires 

additional nonvolatile memory to store the netlist 

information of the circuit outside the FPGA. When the 

FPGA is powered, the internal circuit information is 

transferred from the external nonvolatile memory to the 

FPGA as a bitstream, and the FPGA operates based on this 

transferred bitstream. The bitstream transferred from the 

external memory contains all the circuit configuration 

information of the FPGA. Thus, if the bitstream is corrupted, 

it will cause a fatal problem in the circuit. It is necessary to 

determine whether the transmitted bitstream contains the 

original circuit information to minimize the damage caused 

by an impaired circuit. The process of converting a bitstream 

into a file that contains the internal netlist information of the 

FPGA is called reverse engineering. Various studies on 

reverse engineering have been conducted recently to restore 

the programmable logic points (PLPs) and programmable 

interconnect points (PIPs) of FPGAs [3]-[10]. Several 

reverse engineering tools have been developed, including 

Debit [3], which was first developed, BIL [4], Bit2ncd [5], 

BRET [6], and Bit2RTL [7] to enhance the recovery range.  

This paper introduces the reverse engineering process to 

reconstruct PIP and PLP into a circuit using Xilinx design 

language (XDL), Xilinx design language routing and 

configurable logic block (XDLRC), and bitstream files 

generated using the ISE design tool. In this process, a 

mapping table is created by comparing the options of PLP 

and PIP containing the configurable information of the 

FPGA with the bitstream. The bitstream is restored to a 

netlist file based on this mapping table. 

 

 
II. BACKGROUND 

 

To implement a circuit in Xilinx FPGAs, we can use the 

ISE design tool or Vivado developed by Xilinx. The ISE 

design tool is used for FPGAs before the 7 series that was 

recently developed by Xilinx, and Vivado is used for FPGAs 

after the 7 series. However, Vivado does not provide the 

internal netlist in a readable format for developers, making 

it difficult to obtain the information required to perform 

reverse engineering. Therefore, we performed reverse 

engineering with FPGAs using the ISE design tool, which 

provides an internal netlist as a form of XDLRC and XDL.  

Figure 1 shows a flowchart of the Xilinx ISE design tool 

with files created in each step. The first native generic 

database (NGD) file created expresses the input register-

transfer-level (RTL) design as an internal netlist file. When 

an NGD file, which is a netlist file, is mapped to an FPGA 
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circuit, a native circuit description (NCD) file is generated. 

The NCD file expresses the RTL design as a primitive of the 

circuit. When the NCD file undergoes the place & route 

process, a P&Red NCD file is created. This NCD file 

contains information mapped to the FPGA from the RTL 

input to the FPGA, but users cannot understand it because it 

is stored in binary format. An NCD file can be converted to 

a Xilinx design language (XDL) file that can be understood 

by users. The XDL file can be created using the ncd2xdl 

option of the xdl command in the ISE design tool. The XDL 

file can provide the PLP and PIP information of the FPGA 

because it has the same netlist information as the NCD file. 

However, the XDL file only shows the circuit information 

used in the FPGA, and the information of the entire chip is 

unknown. A Xilinx design language routing and 

configurable logic block (XDLRC) file is required to find 

out the information of the entire chip, and it can be generated 

using the -report option of the xdl command. The Xilinx 

FPGA is an SRAM-based FPGA, which stores internal 

netlist information in external memory as a bitstream. The 

bitstream file format converted from the FPGA is a BIT file 

and the information of the NCD file is stored as a bitstream. 

The BIT file can be created using the bitgen command with 

the -b option, which creates a raw bit file in ASCII code. The 

BIT file is stored in an external memory PROM as an MCS 

(configuration memory) file, and the stored bitstream is 

transferred to the FPGA when the FPGA is powered. 

 

A. Analysis of XDLRC file 

The XDLRC file describes the FPGA chip in a 

hierarchical top-down manner, and the overall configuration 

consists of a header section, tile section, primitive_defs 

section as shown in Figure 2. The header section at the top 

of the file shows the type and information of the FPGA chip 

currently represented in the XDLRC file. For example, if the 

target device is xc3s50vq100-5, xc3 indicates the Spartan-3 

device, s50 indicates the size of the chip, vq100 indicates the 

type of package applied to the s50 chip, and -5 indicates the 

speed level of the chip. The tile section shows the total 

 

 
number of rows and columns of tiles when the FPGA is 

configured in a two-dimensional array, the name and type of 

each tile, and the number of declared primitives in this order. 

In addition, the types of primitive_site, wire, conn, and pip 

declared according to each tile type are indicated in the tile 

section. 

Figure 3 shows a schematic of the entire chip with each 

tile type categorized using the XDLRC file of xc3s50vq100-

5. The types of tiles are configurable logic block (CLB), 

IOB, TERM, Block RAM, and GCLK. CLB consists of 

logical resources such as PLP and PIP for implementing 

sequential and combination circuits. TERM is located at the 

edge of the FPGA and consists of wires and pips that take 

charge of the signal connections between nearby tiles. Block 

RAM is a default storage space provided by FPGA, and there 

is a multiplier near each block RAM. GCLK is a set of tiles 

containing primitives related to clock information such as 

clock buffer and digital clock manager (DCM). IOB 

provides unidirectional or bidirectional interfaces between 

the pins in package of the chips and the internal logic of 

FPGA. Figure 4 shows a schematic internal structure of the 

tiles in an FPGA chip. Tiles are the largest unit of an FPGA 

chip and are arranged in a grid form in the FPGA. Primitives 

in a tile represent circuits for performing a specific 

operation, and the available primitives differ depending on 

the type of tile. Table I lists the types of primitives that can 

be used in each tile. To express the circuit configuration of 

tiles, we need not only primitives, but also wires which 

indicate the paths of signals declared in a tile, conns which 

indicate fixed connections between different tiles, and pips 

which indicate connections between freely configurable 

wires.  

The primitive_defs section, which describes the 

configuration information of a primitive that is a lower layer 

of the tile, is described after the tile section in the XDLRC 

P&R'd 

NCD file

XDL file

BIT fileNCD fileNGD fileRTL file

XDLRC

ncd2xdl

-report

bitgenP&Rngdbuild map

MCS file PROM

 
 

Fig. 1. Xilinx ISE Design Tools flow 

 
Fig. 2. XDLRC file format. 

: CLB : I/O : GCLK : TERM : Block RAM  
 

Fig. 3. Internal structure of the xc3s50 devices. 
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Fig. 4. Internal circuit structure of tile. 
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file. This section shows the internal structure of all kinds of 

primitives configured in the primitive_site, the physical 

location of the primitives. The primitive_defs section 

consists of pinwires corresponding to the input and output 

and elements implementing the internal circuit. Figure 5 

shows the configuration of the primitive_site based on the 

primitive_defs section and Table II shows the number of 

PLPs that appear in each primitive. An element in a primitive 

consists of a pin that represents the input and output of the 

element, a conn that represents a fixed connection to another 

element, and a cfg that can be used to configure freely the 

inside of the circuit. The XDLRC file representing the 

xc3s50vq100-5 chip in Figure 2 has a size of 46,143,454 

bytes and consists of 1,824,280 lines. 

B. Analysis of XDL file 

The internal structure of an XDL file is largely composed 

of three sections: design, instance, and net as shown in 

Figure 6. The design section, which is located at the top of 

the file, shows the name of the design and the FPGA device 

information. The instance section describes the primitive 

instance information of a primitive_site in a specific tile, 

which includes the instance name, the type of the instanced 

primitive, and the layout information in the chip, which 

shows the primitive_sites of specific tiles. Next, there is a cfg 

string that shows the internal element configuration 

according to the type of the instanced primitive. The cfg also 

shows the type of PLP used in the primitive and the currently 

used option of PLP. Finally, the net section at the bottom 

shows the inpin and outpin information and PIP information. 

The inpin and outpin are determined by the pinwire of the 

instanced primitive. This section declares the PIPs required 

to connect from the first outpin to the final inpin using conns, 

which are fixed connections with external tiles. Figure 7 

shows the result of implementing a circuit by combining the 

PLPs and PIPs of the instance and the net sections of the 

XDL. Whether to use primitive_sites inside a tile is 

determined by the circuit to be implemented. The red line in 

Figure 7 indicates the currently used primitives among the 

various primitives in the tile, and the currently used options 

of PLP and PIP among the various options. 

C. Analysis of BIT file 

The internal netlist information is stored in external 

memory as a bitstream. The bitgen command of the ISE 

design tool is used to create a BIT file in binary format. To 

convert a binary file into a human-readable file using ASCII 

code, a raw bit file is created using the -b option and this file 

is used for reverse engineering. A raw bit file consists of 

13,681 lines of 32 bits per line, and the entire file is divided 

into a command section, configuration data section, and 

terminal section as shown in Figure 8. The configuration 

command section shows commands to inform 

TABLE I. 

Types and numbers of primitives according to the category of tiles. 
 

Tile Type of primitive 
Number of 

primitives 

GCLK 

BSCAN, DCIRESET, 

GLOBALSIG, ICAP, BUFGMUX, 

CAPTURE, DCI, PMV, STARTUP, 

DCM, VCC, RESERVED_LL 

12 

CLB 
SLICEL, SLICEM, VCC, 

RESERVED_LL 
4 

IOB 

DIFFM, DIFFS, IOB, 

RESERVED_ANDOR, VCC, 

RESERVED_LL 

6 

Block 

RAM 
RAMB16, MULT18X18 2 

TERM - - 

 

primitive

pin

element
pinwire conn

   PLP1

   PLP2

cfg

   PLP1

   PLP2

   PLP3

cfg

 
 

Fig. 5. Internal circuit structure of primitive. 

TABLE Ⅱ. 

Number of PLPs according to the type of primitive. 
 

Type of 

primitive 

Number 

of PLPs 
Type of primitive 

Number 

of PLPs 

BSCAN 0 SLICEL 31 

DCIRESET 0 SLICEM 51 

GLOBALSIG 1 RESERVED_ANDOR 1 

ICAP 3 DIFFM 54 

BUFGMUX 4 DIFFS 54 

CAPTURE 3 IOB 54 

DCI 1 DCM 31 

PMV 0 RAMB16 12 

STARTUP 3 MULT18X18 3 

RESERV_LL 0 VCC 0 

 

 
 

Fig. 6. XDL file format. 
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Fig. 7. Reconstruction of the internal circuit according to XDL. 
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synchronization, CRC check, and the amount of 

configuration data expressed in bitstreams. The 

configuration data section stores information about all the  

tiles of the FPGA, and analysis of this information is 

essential for reverse engineering. Bitstreams are arranged 

sequentially by the type of tiles in the same way as the chip 

configuration. One frame consists of 37 lines, and the 

number of frames represented as bitstreams is fixed for each 

tile category. The terminal section is located at the end of the 

raw bit file, and it consists of CRC check section and desync 

section, which terminates synchronization with the external 

memory. 

 

 
III. REVERSE ENGINEERING 

 

Reverse engineering must be performed using the 

information stored in the files analyzed in section II. Figure 

9 shows the algorithm of reverse engineering. First, the 

mapping table of PLP and PIP is created by using BIT, XDL, 

and XDLRC files. Then, reconfiguration is performed to 

generate the XDL file by using the mapping table and 

bitstreams. 

 

A. Mapping table generation 

As the PLP and PIP have different bitstreams depending 

on the configuration options, the bitstreams for all 

configurable options must be generated and compared by 

modifying the XDL. Furthermore, the process of arranging 

the comparison result of raw bit files into a mapping table is 

essential for reverse engineering. 

First, an XDL file applying the configurable options of all 

PLPs must be generated for each primitive to create a 

mapping table of PLPs. For example, SLICEL has 31 PLPs 

and the 31 PLPs have 1 to 7 options excluding #OFF. Hence, 

a total of 89 XDL files are required to create a mapping table  

for SLICEL. The number of XDL files to be generated 

according to each primitive is hundreds for PLPs and 

thousands for PIPs. Thus, an XDL generator can be created 

to generate XDL files automatically by applying the options 

of each PLP. Figure 10 shows a flowchart of the algorithm 

of the XDL generator. The inputs of the XDL generator are 

the original XDL file and the target primitive type, and the 

output is the XDL file with changed options of each PLP 

belonging to the target primitive. Figure 11 illustrates the 

behavior of the XDL generator with an example of FFX 

when the PLP has three options: #OFF, #FF, and #LATCH. 

Figure 11 (a) shows the cfg string representing SLICEL in 

the original XDL file, and the options of FFX are determined 

by the red squared part. Figure 11 (b) shows the cfg of XDL 

files with FFX options changed to #OFF, #FF, and #LATCH. 

The XDL files with the PLP or PIP options changed one 

by one are first converted to NCD and then used to generate 

bitstream files. A mapping table for bitstream files is created 

by comparing bitstream files with the #OFF option 

indicating that PLP is not used and with other options 

indicating that PLP for each PLP and checking the bits that 

have changed. To compare between bitstream files, 13,681 

lines of bitstreams with each line consisting of 32 bits must 

be compared for the number of times excluding the #OFF 

option of the target PLP or PIP. For this task, a bitstream 

 
 

Fig. 8. Raw bit file format. 

XDL file XDLRC

Mapping

Table

Reversed

NCD file

xdl2ncd

Reversed

XDL file

RBT 

comparator

generate .rbt files
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XDL 
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Fig. 9. Algorithm of reverse engineering. 

Start

 Input: .xdl file, target primitive

Search target primitive in XDL

Change the option of the target 
PLP or PIP

Generate revised XDL files

.xdl file

 
 

Fig. 10. Algorithm of XDL generator. 

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31  ,

  cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

       CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

       F::#OFF F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

       FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

       FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

       XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "  
(a) 

 

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31  ,

  cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

       CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

       F::#OFF F5USED::#OFF FFX::#LATCH FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

       FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

       FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

       XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31  ,

  cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

       CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

       F::#OFF F5USED::#OFF FFX::#FF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

       FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

       FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

       XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31  ,

  cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

       CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

       F::#OFF F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

       FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

       FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

       XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

 
(b) 

 

Fig. 11. Operation of XDL generator; (a)original XDL file 

(b)modified XDL files. 
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comparator that performs this comparison automatically 

must be used. Figure 12 shows the algorithm for the overall 

operation of the bitstream (BIT) comparator. The inputs are 

the entire raw bit file and the target primitive. By comparing   

the bitstreams with the #OFF option applied for all PIPs and 

PLPs and the raw bit file with the other options, mapping 

table for PLPs and PIPs for each primitive can be created as 

shown in Figure 13. The PLP, the position of the bit, the bit 

value of the OFF option, and the bit value of the option 

appear in this order. For example, among the PLPs of the 

IOB tile in Figure 13, the position where the bit for 

TFF2_INIT_ATTR appears is 216_16, the bit value of the 

OFF option is 0, and the bit value of the INIT0 option is 1. 

It is worthwhile to notice that the proposed reverse 

engineering is more efficient compared to Bit2ncd [5]. 

Whereas Bit2ncd[5] constructs all the possible network to 

recover a single PIP, the proposed method construct a branch 

of an entire network, and thus it can highly save a time to 

build the PIP mapping table by reducing searching space.  

 

B. Circuit reconstruction 

The aim for circuit reconstruction is to convert a raw bit 

file into an XDL file based on the created mapping table. It 

is required to know which of the PLP and PIP options were 

used in order to perform this conversion. The bits that appear 

in the raw bit file to be converted are searched in the mapping 

table created earlier. In this searching process based on the 

position of the bit, the position of the tile, the type of 

primitive, the used PLP or PIP, and the used options can be 

observed. However, if the PLP option has the same bit 

representation as the PLP option of #OFF, the recovery 

becomes more complicated since no bit difference appears 

when it is compared with the basic XDL file. In this case, the 

option of the PLP to be used must be selected by comparing 

it with the options of other PLPs that are already represented 

as bits. For example, if an option other than #OFF is 

represented by the bit FFX_INIT_ATTR, FFX can be 

declared only if an option other than the #OFF option is 

selected. Therefore, it must be considered that the #FF 

option having the same bit representation as the #OFF option 

among the FFX options was used. 

 

 
IV. EXPERIMENTAL RESULTS 

 

The bitstream of the 64-bit LFSR circuit in Figure 14 

implemented in an xc3s50 device among the Spartan-3 

FPGAs was restored to an XDL file through the XDL 

recovery process using a mapping table. The 64-bit LFSR in 

Figure 15 mapped on xc3s50 device using 16 CLB tiles, 34 

IOB tiles, and 1 BUFGMUX tile for GCLK. When the 

bitstream file representing a 64-bit LFSR in Figure 14 is 

compared with a raw bit file with no declaration of PLP and 

PIP, the position of a bit with a different bit representation 

must first be determined. Figure 15 shows part of the XDL 

file restored by performing XDL recovery based on the 

mapping table with the entire basic raw bit file. However, in 

the state immediately after the restoration based on the 

mapping table, the options having the same bit 

representation as the #OFF option cannot be restored. These 

options must be determined by comparing them with the 

options of other PLPs that appear in the bit representations. 

Finally, after recovering the PLP options that did not appear 

when compared with the default raw bit file, the original and 

restored XDL files are 88% identical to each other. The 

recovery ratio is calculated based on whether the number of 

restored 1’s among all 1’s in a bitstream. Although it is 

hardly to say 88% LFSR can works as an original LFSR, the 

Start

 Input: .rbt file, target primitive

Collect .rbt files

Compare the bitstreams

Extract control bits and control 
value

Mapping table

 

Fig. 12. Algorithm of BIT comparator. 

 

Fig. 13. Mapping table of I/O tile. 

S0 S1 SN-1

g0 g1 gN-1

S0[i] S1[i] SN-1[i]

F[i]

gN

 

Fig. 14. 64-bit LFSR circuit when N = 64. 

 
(a) 

 
(b) 

 

Fig. 15. Part of (a) original XDL file and (b) recovered XDL file for 

64-bit LFSR. 

   
(a)                 (b)  

 

Fig. 16. (a) Original circuit and (b) recovered circuit based on 

recovered XDL file 
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recovered XDL definitely help to estimate the target design 

as a LFSR. When the generated XDL file is converted into 

an NCD file using the xdl2ncd command of the ISE design 

tool, Fig. 16 shows the result of mapping the converted NCD 

file to the circuit. The recovered netlist by the proposed 

reverse engineering is nearly perfect recovered from a 

graphical view point. 

 
 

V. CONCLUSIONS 

 

A reverse engineering tool focused on PIP and PLP 

recovery was implemented, and the process of reverse 

engineering and the operation of the automation tools 

required in each step were described. When a 64-bit LFSR 

was restored using reverse engineering tools and Xilinx ISE 

design tools focused on PIP and PLP restoration, 88% of the 

total circuits could be restored. Reverse engineering tools 

have been actively developed using the ISE design tool, and 

their recovery rates are up to 80%. Therefore, even if the 

bitstreams of the external memory are attacked, whether the 

circuit information has been damaged can be determined. 

For a further study, a reverse engineering tool for 7-series 

FPGA chips using Vivado will be developed to enlarge a 

reverse engineering area. 
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