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Abstract - SRAM-based Field Programmable Gate Arrays
(FPGAs) are more widely used compared to Flash-based and
anti-fuse based FPGAs in various industries. One disadvantage
of the SRAM-based FPGA is that SRAM is natively volatile and
thus it requires additional nonvolatile memory to store the
netlist information of the circuit outside the FPGA. When the
FPGA is powered on, the bitstream file is transferred from the
external nonvolatile memory to the SRAM-based FPGA. The
secure issues arise if the bitstream is modified or corrupted by
attacker resulting in a fatal problem in the circuit. Therefore,
reverse engineering that converting a bitstream into an internal
netlist is necessary to find such harmful modification. In this
paper, we describe the overall process of reverse engineering
based on ISE design tools in details. According to the
experimental results, the proposed reverse engineering tool can
recover 88% internal circuit as for the example of 64-bit LFSR
design.
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1. INTRODUCTION

Application-specific integrated circuit (ASIC) must be
designed to satisfy the specifications of application systems.
Thus, ASIC requires considerable time and cost to build the
system, and once the circuit is produced as a chip, it cannot
be modified. To mitigate this disadvantage of ASICs, field-
programmable gate arrays (FPGAs) are used in several
industries. FPGAs have the advantage of parallel and high-
speed processing because the circuit can be added or
changed freely even after the circuit has been configured and
the digital circuit operates directly [1].

FPGAs are classified into SRAM-based, FLASH-based,
and FUSE-based FPGAs according to the fabrication
method, and the SRAM-based FPGA is most widely used
owing to advantages in area, process, and speed [2].
However, the SRAM-based FPGA is volatile and requires
additional nonvolatile memory to store the netlist
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information of the circuit outside the FPGA. When the
FPGA is powered, the internal circuit information is
transferred from the external nonvolatile memory to the
FPGA as a bitstream, and the FPGA operates based on this
transferred bitstream. The bitstream transferred from the
external memory contains all the circuit configuration
information of the FPGA. Thus, if the bitstream is corrupted,
it will cause a fatal problem in the circuit. It is necessary to
determine whether the transmitted bitstream contains the
original circuit information to minimize the damage caused
by an impaired circuit. The process of converting a bitstream
into a file that contains the internal netlist information of the
FPGA is called reverse engineering. Various studies on
reverse engineering have been conducted recently to restore
the programmable logic points (PLPs) and programmable
interconnect points (PIPs) of FPGAs [3]-[10]. Several
reverse engineering tools have been developed, including
Debit [3], which was first developed, BIL [4], Bit2ncd [5],
BRET [6], and Bit2RTL [7] to enhance the recovery range.

This paper introduces the reverse engineering process to
reconstruct PIP and PLP into a circuit using Xilinx design
language (XDL), Xilinx design language routing and
configurable logic block (XDLRC), and bitstream files
generated using the ISE design tool. In this process, a
mapping table is created by comparing the options of PLP
and PIP containing the configurable information of the
FPGA with the bitstream. The bitstream is restored to a
netlist file based on this mapping table.

Il. BACKGROUND

To implement a circuit in Xilinx FPGAs, we can use the
ISE design tool or Vivado developed by Xilinx. The ISE
design tool is used for FPGAs before the 7 series that was
recently developed by Xilinx, and Vivado is used for FPGAs
after the 7 series. However, Vivado does not provide the
internal netlist in a readable format for developers, making
it difficult to obtain the information required to perform
reverse engineering. Therefore, we performed reverse
engineering with FPGAs using the ISE design tool, which
provides an internal netlist as a form of XDLRC and XDL.

Figure 1 shows a flowchart of the Xilinx ISE design tool
with files created in each step. The first native generic
database (NGD) file created expresses the input register-
transfer-level (RTL) design as an internal netlist file. When
an NGD file, which is a netlist file, is mapped to an FPGA
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Fig. 2. XDLRC file format.

circuit, a native circuit description (NCD) file is generated.
The NCD file expresses the RTL design as a primitive of the
circuit. When the NCD file undergoes the place & route
process, a P&Red NCD file is created. This NCD file
contains information mapped to the FPGA from the RTL
input to the FPGA, but users cannot understand it because it
is stored in binary format. An NCD file can be converted to
a Xilinx design language (XDL) file that can be understood
by users. The XDL file can be created using the ned2xdl
option of the xdl command in the ISE design tool. The XDL
file can provide the PLP and PIP information of the FPGA
because it has the same netlist information as the NCD file.
However, the XDL file only shows the circuit information
used in the FPGA, and the information of the entire chip is
unknown. A Xilinx design language routing and
configurable logic block (XDLRC) file is required to find
out the information of the entire chip, and it can be generated
using the -report option of the xdl command. The Xilinx
FPGA is an SRAM-based FPGA, which stores internal
netlist information in external memory as a bitstream. The
bitstream file format converted from the FPGA is a BIT file
and the information of the NCD file is stored as a bitstream.
The BIT file can be created using the bitgen command with
the -b option, which creates a raw bit file in ASCII code. The
BIT file is stored in an external memory PROM as an MCS
(configuration memory) file, and the stored bitstream is
transferred to the FPGA when the FPGA is powered.

A. Analysis of XDLRC file

The XDLRC file describes the FPGA chip in a
hierarchical top-down manner, and the overall configuration
consists of a header section, tile section, primitive defs
section as shown in Figure 2. The header section at the top
of the file shows the type and information of the FPGA chip
currently represented in the XDLRC file. For example, if the
target device is xc3s50vq100-5, xc3 indicates the Spartan-3
device, s50 indicates the size of the chip, vq100 indicates the
type of package applied to the s50 chip, and -5 indicates the
speed level of the chip. The file section shows the total
number of rows and columns of tiles when the FPGA is
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Fig. 3. Internal structure of the xc3s50 devices.
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Fig. 4. Internal circuit structure of tile.
configured in a two-dimensional array, the name and type of
each tile, and the number of declared primitives in this order.
In addition, the types of primitive_site, wire, conn, and pip
declared according to each tile type are indicated in the tile
section.

Figure 3 shows a schematic of the entire chip with each
tile type categorized using the XDLRC file of xc3s50vq100-
5. The types of tiles are configurable logic block (CLB),
10B, TERM, Block RAM, and GCLK. CLB consists of
logical resources such as PLP and PIP for implementing
sequential and combination circuits. TERM is located at the
edge of the FPGA and consists of wires and pips that take
charge of the signal connections between nearby tiles. Block
RAM is a default storage space provided by FPGA, and there
is a multiplier near each block RAM. GCLK is a set of tiles
containing primitives related to clock information such as
clock buffer and digital clock manager (DCM). 10B
provides unidirectional or bidirectional interfaces between
the pins in package of the chips and the internal logic of
FPGA. Figure 4 shows a schematic internal structure of the
tiles in an FPGA chip. 7iles are the largest unit of an FPGA
chip and are arranged in a grid form in the FPGA. Primitives
in a tile represent circuits for performing a specific
operation, and the available primitives differ depending on
the type of tile. Table I lists the types of primitives that can
be used in each tile. To express the circuit configuration of
tiles, we need not only primitives, but also wires which
indicate the paths of signals declared in a tile, conns which
indicate fixed connections between different files, and pips
which indicate connections between freely configurable
wires.

The primitive defs section, which describes the
configuration information of a primitive that is a lower layer
of the tile, is described after the file section in the XDLRC
file. This section shows the internal structure of all kinds of
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TABLE 1.
Types and numbers of primitives according to the category of tiles.
. - Number of
Tile Type of primitive primitives
BSCAN, DCIRESET, GLOBALSIG,
ICAP, BUFGMUX, CAPTURE,
GCLK DCI, PMV, STARTUP, DCM, VCC, 12
RESERVED_LL
SLICEL, SLICEM, VCC,
CLB RESERVED LL 4
DIFFM, DIFFS, 0B,
10B RESERVED_ANDOR, VCC, 6
RESERVED_LL
Block
RAM RAMB16, MULT18X18 2
TERM - -
primitive
o element
pinwire pin conn, -
gPLPL !
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cfg = -
77777 |
| gPLPL | -
; OpLP2 } -

Fig. 5. Internal circuit structure of primitive.

primitives configured in the primitive_site, the physical
location of the primitives. The primitive defs section
consists of pinwires corresponding to the input and output
and elements implementing the internal circuit. Figure 5
shows the configuration of the primitive site based on the
primitive_defs section and Table II shows the number of
PLPs that appear in each primitive. An element in a primitive
consists of a pin that represents the input and output of the
element, a conn that represents a fixed connection to another
element, and a cfg that can be used to configure freely the
inside of the circuit. The XDLRC file representing the
xc3s50vq100-5 chip in Figure 2 has a size of 46,143,454
bytes and consists of 1,824,280 lines.

B. Analysis of XDL file

The internal structure of an XDL file is largely composed
of three sections: design, instance, and net as shown in
Figure 6. The design section, which is located at the top of
the file, shows the name of the design and the FPGA device
information. The instance section describes the primitive
instance information of a primitive_site in a specific tile,
which includes the instance name, the type of the instanced
primitive, and the layout information in the chip, which
shows the primitive_sites of specific tiles. Next, there is a cfg
string that shows the internal element configuration
according to the type of the instanced primitive. The cfg also
shows the type of PLP used in the primitive and the currently
used option of PLP. Finally, the net section at the bottom
shows the inpin and outpin information and PIP information.
The inpin and outpin are determined by the pinwire of the
instanced primitive. This section declares the PIPs required
to connect from the first outpin to the final inpin using conns,
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TABLE II.
Number of PLPs according to the type of primitive.
e, | Simeer | ypeotprmie | ber
BSCAN 0 SLICEL 31
DCIRESET 0 SLICEM 51
GLOBALSIG 1 RESERVED_ANDOR 1
ICAP 3 DIFFM 54
BUFGMUX 4 DIFFS 54
CAPTURE 3 10B 54
DCI 1 DCM 31
PMV 0 RAMB16 12
STARTUP 3 MULT18X18
RESERV_LL 0 VCC
_ Design
XDL file
Fig. 6. XDL file format.
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Fig. 7. Reconstruction of the internal circuit according to XDL.

which are fixed connections with external tiles. Figure 7
shows the result of implementing a circuit by combining the
PLPs and PIPs of the instance and the net sections of the
XDL. Whether to use primitive sites inside a tile is
determined by the circuit to be implemented. The red line in
Figure 7 indicates the currently used primitives among the
various primitives in the tile, and the currently used options
of PLP and PIP among the various options.

C. Analysis of BIT file

The internal netlist information is stored in external
memory as a bitstream. The bitgen command of the ISE
design tool is used to create a BIT file in binary format. To
convert a binary file into a human-readable file using ASCII
code, a raw bit file is created using the -b option and this file
is used for reverse engineering. A raw bit file consists of
13,681 lines of 32 bits per line, and the entire file is divided
into a command section, configuration data section, and
terminal section as shown in Figure 8. The configuration

command  section shows commands to inform
synchronization, CRC check, and the amount of
configuration data expressed in bitstreams. The

configuration data section stores information about all the
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Fig. 9. Algorithm of reverse engineering.

tiles of the FPGA, and analysis of this information is
essential for reverse engineering. Bitstreams are arranged
sequentially by the type of tiles in the same way as the chip
configuration. One frame consists of 37 lines, and the
number of frames represented as bitstreams is fixed for each
tile category. The terminal section is located at the end of the
raw bit file, and it consists of CRC check section and desync
section, which terminates synchronization with the external
memory.

I1l. REVERSE ENGINEERING

Reverse engineering must be performed using the
information stored in the files analyzed in section II. Figure
9 shows the algorithm of reverse engineering. First, the
mapping table of PLP and PIP is created by using BIT, XDL,
and XDLRC files. Then, reconfiguration is performed to
generate the XDL file by using the mapping table and
bitstreams.

A. Mapping table generation

As the PLP and PIP have different bitstreams depending
on the configuration options, the bitstreams for all
configurable options must be generated and compared by
modifying the XDL. Furthermore, the process of arranging
the comparison result of raw bit files into a mapping table is
essential for reverse engineering.

First, an XDL file applying the configurable options of all
PLPs must be generated for each primitive to create a
mapping table of PLPs. For example, SLICEL has 31 PLPs
and the 31 PLPs have 1 to 7 options excluding #OFF. Hence,
a total of 89 XDL files are required to create a mapping table
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Fig. 10. Algorithm of XDL generator.
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Fig. 11. Operation of XDL generator; (a)original XDL file
(bYmodified XDL files.

for SLICEL. The number of XDL files to be generated
according to each primitive is hundreds for PLPs and
thousands for PIPs. Thus, an XDL generator can be created
to generate XDL files automatically by applying the options
of each PLP. Figure 10 shows a flowchart of the algorithm
of the XDL generator. The inputs of the XDL generator are
the original XDL file and the target primitive type, and the
output is the XDL file with changed options of each PLP
belonging to the target primitive. Figure 11 illustrates the
behavior of the XDL generator with an example of FFX
when the PLP has three options: #OFF, #FF, and #LATCH.
Figure 11 (a) shows the cfg string representing SLICEL in
the original XDL file, and the options of FFX are determined
by the red squared part. Figure 11 (b) shows the cfg of XDL
files with FFX options changed to #OFF, #FF, and #LATCH.

The XDL files with the PLP or PIP options changed one
by one are first converted to NCD and then used to generate
bitstream files. A mapping table for bitstream files is created
by comparing bitstream files with the #OFF option
indicating that PLP is not used and with other options
indicating that PLP for each PLP and checking the bits that
have changed. To compare between bitstream files, 13,681
lines of bitstreams with each line consisting of 32 bits must
be compared for the number of times excluding the #OFF
option of the target PLP or PIP. For this task, a bitstream
comparator that performs this comparison automatically
must be used. Figure 12 shows the algorithm for the overall
operation of the bitstream (BIT) comparator. The inputs are
the entire raw bit file and the target primitive. By comparing

F‘XJSF‘D :4OFF G::#OFF GYMU
XBUSED: : #OFF XUSED: : #OFF
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| Input: .rbt file, target primitive

| Collect .rbt files |
| Compare the bitstreams |
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Fig. 12. Algorithm of BIT comparator.

| Extract control bits and control

TFF1_SR_ATTR 216_11
#OFF 0
SRLOW 1
TFR2_INIT_ATTR 216_16
#OFF 0
INITO 1
TFF2_SR_ATTR 216_13
#OFF 0
SRLOW 1
QFF1_INIT_ATTR 23316
#OFF 0
INITO 1

Fig. 13. Mapping table of 1/0 tile.

the bitstreams with the #OFF option applied for all PIPs and
PLPs and the raw bit file with the other options, mapping
table for PLPs and PIPs for each primitive can be created as
shown in Figure 13. The PLP, the position of the bit, the bit
value of the OFF option, and the bit value of the option
appear in this order. For example, among the PLPs of the
IOB tile in Figure 13, the position where the bit for
TFF2 INIT _ATTR appears is 216_16, the bit value of the
OFF option is 0, and the bit value of the INITO option is 1.
It is worthwhile to notice that the proposed reverse
engineering is more efficient compared to Bit2ncd [5].
Whereas Bit2ncd[5] constructs all the possible network to
recover a single PIP, the proposed method construct a branch
of an entire network, and thus it can highly save a time to
build the PIP mapping table by reducing searching space.

B. Circuit reconstruction

The aim for circuit reconstruction is to convert a raw bit
file into an XDL file based on the created mapping table. It
is required to know which of the PLP and PIP options were
used in order to perform this conversion. The bits that appear
in the raw bit file to be converted are searched in the mapping
table created earlier. In this searching process based on the
position of the bit, the position of the tile, the type of
primitive, the used PLP or PIP, and the used options can be
observed. However, if the PLP option has the same bit
representation as the PLP option of #OFF, the recovery
becomes more complicated since no bit difference appears
when it is compared with the basic XDL file. In this case, the
option of the PLP to be used must be selected by comparing
it with the options of other PLPs that are already represented
as bits. For example, if an option other than #OFF is
represented by the bit FFX INIT ATTR, FFX can be
declared only if an option other than the #OFF option is
selected. Therefore, it must be considered that the #FF
option having the same bit representation as the #OFF option
among the FFX options was used.
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XUSED: : #OFF YBUSED: :

(b)
Fig. 15. Part of (a) original XDL file and (b) recovered XDL file for
64-bit LFSR.

(b)

Fig. 16. (a) Original circuit and (b) recovered circuit based on
recovered XDL file

@

IV. EXPERIMENTAL RESULTS

The bitstream of the 64-bit LFSR circuit in Figure 14
implemented in an xc3s50 device among the Spartan-3
FPGAs was restored to an XDL file through the XDL
recovery process using a mapping table. The 64-bit LFSR in
Figure 15 mapped on xc3s50 device using 16 CLB tiles, 34
IOB tiles, and 1 BUFGMUX tile for GCLK. When the
bitstream file representing a 64-bit LFSR in Figure 14 is
compared with a raw bit file with no declaration of PLP and
PIP, the position of a bit with a different bit representation
must first be determined. Figure 15 shows part of the XDL
file restored by performing XDL recovery based on the
mapping table with the entire basic raw bit file. However, in
the state immediately after the restoration based on the
mapping table, the options having the same bit
representation as the #OFF option cannot be restored. These
options must be determined by comparing them with the
options of other PLPs that appear in the bit representations.
Finally, after recovering the PLP options that did not appear
when compared with the default raw bit file, the original and
restored XDL files are 88% identical to each other. The
recovery ratio is calculated based on whether the number of
restored 1°s among all 1’s in a bitstream. Although it is
hardly to say 88% LFSR can works as an original LFSR, the
recovered XDL definitely help to estimate the target design
as a LFSR. When the generated XDL file is converted into
an NCD file using the xdI2ned command of the ISE design
tool, Fig. 16 shows the result of mapping the converted NCD
file to the circuit. The recovered netlist by the proposed
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reverse engineering is nearly perfect recovered from a
graphical view point.

V. CONCLUSIONS

A reverse engineering tool focused on PIP and PLP
recovery was implemented, and the process of reverse
engineering and the operation of the automation tools
required in each step were described. When a 64-bit LFSR
was restored using reverse engineering tools and Xilinx ISE
design tools focused on PIP and PLP restoration, 88% of the
total circuits could be restored. Reverse engineering tools
have been actively developed using the ISE design tool, and
their recovery rates are up to 80%. Therefore, even if the
bitstreams of the external memory are attacked, whether the
circuit information has been damaged can be determined.
For a further study, a reverse engineering tool for 7-series
FPGA chips using Vivado will be developed to enlarge a
reverse engineering area.
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