
IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

Reverse Engineering for Xilinx FPGA Chips

using ISE Design Tools

So Yeon Choi1, Ji Woon Park and Ho Young Yooa
 Department of Electronics Engineering, Chungnam National University

E-mail : 1soyeonchoi@cnu.ac.kr

Abstract - SRAM-based Field Programmable Gate Arrays

(FPGAs) are more widely used compared to Flash-based and

anti-fuse based FPGAs in various industries. One disadvantage

of the SRAM-based FPGA is that SRAM is natively volatile and

thus it requires additional nonvolatile memory to store the

netlist information of the circuit outside the FPGA. When the

FPGA is powered on, the bitstream file is transferred from the

external nonvolatile memory to the SRAM-based FPGA. The

secure issues arise if the bitstream is modified or corrupted by

attacker resulting in a fatal problem in the circuit. Therefore,

reverse engineering that converting a bitstream into an internal

netlist is necessary to find such harmful modification. In this

paper, we describe the overall process of reverse engineering

based on ISE design tools in details. According to the

experimental results, the proposed reverse engineering tool can

recover 88% internal circuit as for the example of 64-bit LFSR

design.

Keywords—ISE Design Tools, Programmable logic

points, Programmable interconnect points, Reverse

Engineering, Xilinx FPGA

I. INTRODUCTION

Application-specific integrated circuit (ASIC) must be

designed to satisfy the specifications of application systems.

Thus, ASIC requires considerable time and cost to build the

system, and once the circuit is produced as a chip, it cannot

be modified. To mitigate this disadvantage of ASICs, field-

programmable gate arrays (FPGAs) are used in several

industries. FPGAs have the advantage of parallel and high-

speed processing because the circuit can be added or

changed freely even after the circuit has been configured and

the digital circuit operates directly [1].

FPGAs are classified into SRAM-based, FLASH-based,

and FUSE-based FPGAs according to the fabrication

method, and the SRAM-based FPGA is most widely used

owing to advantages in area, process, and speed [2].

However, the SRAM-based FPGA is volatile and requires

additional nonvolatile memory to store the netlist

information of the circuit outside the FPGA. When the

FPGA is powered, the internal circuit information is

transferred from the external nonvolatile memory to the

FPGA as a bitstream, and the FPGA operates based on this

transferred bitstream. The bitstream transferred from the

external memory contains all the circuit configuration

information of the FPGA. Thus, if the bitstream is corrupted,

it will cause a fatal problem in the circuit. It is necessary to

determine whether the transmitted bitstream contains the

original circuit information to minimize the damage caused

by an impaired circuit. The process of converting a bitstream

into a file that contains the internal netlist information of the

FPGA is called reverse engineering. Various studies on

reverse engineering have been conducted recently to restore

the programmable logic points (PLPs) and programmable

interconnect points (PIPs) of FPGAs [3]-[10]. Several

reverse engineering tools have been developed, including

Debit [3], which was first developed, BIL [4], Bit2ncd [5],

BRET [6], and Bit2RTL [7] to enhance the recovery range.

This paper introduces the reverse engineering process to

reconstruct PIP and PLP into a circuit using Xilinx design

language (XDL), Xilinx design language routing and

configurable logic block (XDLRC), and bitstream files

generated using the ISE design tool. In this process, a

mapping table is created by comparing the options of PLP

and PIP containing the configurable information of the

FPGA with the bitstream. The bitstream is restored to a

netlist file based on this mapping table.

II. BACKGROUND

To implement a circuit in Xilinx FPGAs, we can use the

ISE design tool or Vivado developed by Xilinx. The ISE

design tool is used for FPGAs before the 7 series that was

recently developed by Xilinx, and Vivado is used for FPGAs

after the 7 series. However, Vivado does not provide the

internal netlist in a readable format for developers, making

it difficult to obtain the information required to perform

reverse engineering. Therefore, we performed reverse

engineering with FPGAs using the ISE design tool, which

provides an internal netlist as a form of XDLRC and XDL.

Figure 1 shows a flowchart of the Xilinx ISE design tool

with files created in each step. The first native generic

database (NGD) file created expresses the input register-

transfer-level (RTL) design as an internal netlist file. When

an NGD file, which is a netlist file, is mapped to an FPGA

a. Corresponding author; hyyoo@cnu.ac.kr

Manuscript Received Dec. 02, 2019, Revised Dec. 23, 2019, Accepted
Dec. 26, 2019

This is an Open Access article distributed under the terms of the Creative Commons

Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any

medium, provided the original work is properly cited.

http://creativecommons.org/licenses/bync/3.0

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

circuit, a native circuit description (NCD) file is generated.

The NCD file expresses the RTL design as a primitive of the

circuit. When the NCD file undergoes the place & route

process, a P&Red NCD file is created. This NCD file

contains information mapped to the FPGA from the RTL

input to the FPGA, but users cannot understand it because it

is stored in binary format. An NCD file can be converted to

a Xilinx design language (XDL) file that can be understood

by users. The XDL file can be created using the ncd2xdl

option of the xdl command in the ISE design tool. The XDL

file can provide the PLP and PIP information of the FPGA

because it has the same netlist information as the NCD file.

However, the XDL file only shows the circuit information

used in the FPGA, and the information of the entire chip is

unknown. A Xilinx design language routing and

configurable logic block (XDLRC) file is required to find

out the information of the entire chip, and it can be generated

using the -report option of the xdl command. The Xilinx

FPGA is an SRAM-based FPGA, which stores internal

netlist information in external memory as a bitstream. The

bitstream file format converted from the FPGA is a BIT file

and the information of the NCD file is stored as a bitstream.

The BIT file can be created using the bitgen command with

the -b option, which creates a raw bit file in ASCII code. The

BIT file is stored in an external memory PROM as an MCS

(configuration memory) file, and the stored bitstream is

transferred to the FPGA when the FPGA is powered.

A. Analysis of XDLRC file

The XDLRC file describes the FPGA chip in a

hierarchical top-down manner, and the overall configuration

consists of a header section, tile section, primitive_defs

section as shown in Figure 2. The header section at the top

of the file shows the type and information of the FPGA chip

currently represented in the XDLRC file. For example, if the

target device is xc3s50vq100-5, xc3 indicates the Spartan-3

device, s50 indicates the size of the chip, vq100 indicates the

type of package applied to the s50 chip, and -5 indicates the

speed level of the chip. The tile section shows the total

number of rows and columns of tiles when the FPGA is

configured in a two-dimensional array, the name and type of

each tile, and the number of declared primitives in this order.

In addition, the types of primitive_site, wire, conn, and pip

declared according to each tile type are indicated in the tile

section.

Figure 3 shows a schematic of the entire chip with each

tile type categorized using the XDLRC file of xc3s50vq100-

5. The types of tiles are configurable logic block (CLB),

IOB, TERM, Block RAM, and GCLK. CLB consists of

logical resources such as PLP and PIP for implementing

sequential and combination circuits. TERM is located at the

edge of the FPGA and consists of wires and pips that take

charge of the signal connections between nearby tiles. Block

RAM is a default storage space provided by FPGA, and there

is a multiplier near each block RAM. GCLK is a set of tiles

containing primitives related to clock information such as

clock buffer and digital clock manager (DCM). IOB

provides unidirectional or bidirectional interfaces between

the pins in package of the chips and the internal logic of

FPGA. Figure 4 shows a schematic internal structure of the

tiles in an FPGA chip. Tiles are the largest unit of an FPGA

chip and are arranged in a grid form in the FPGA. Primitives

in a tile represent circuits for performing a specific

operation, and the available primitives differ depending on

the type of tile. Table I lists the types of primitives that can

be used in each tile. To express the circuit configuration of

tiles, we need not only primitives, but also wires which

indicate the paths of signals declared in a tile, conns which

indicate fixed connections between different tiles, and pips

which indicate connections between freely configurable

wires.

The primitive_defs section, which describes the

configuration information of a primitive that is a lower layer

of the tile, is described after the tile section in the XDLRC

P&R'd

NCD file

XDL file

BIT fileNCD fileNGD fileRTL file

XDLRC

ncd2xdl

-report

bitgenP&Rngdbuild map

MCS file PROM

Fig. 1. Xilinx ISE Design Tools flow

Fig. 2. XDLRC file format.

: CLB : I/O : GCLK : TERM : Block RAM

Fig. 3. Internal structure of the xc3s50 devices.

Tile 1 Tile 2

pinwire pinwire

primitive primitive
wire wire wirewire connpip pip wire pip

Fig. 4. Internal circuit structure of tile.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

file. This section shows the internal structure of all kinds of

primitives configured in the primitive_site, the physical

location of the primitives. The primitive_defs section

consists of pinwires corresponding to the input and output

and elements implementing the internal circuit. Figure 5

shows the configuration of the primitive_site based on the

primitive_defs section and Table II shows the number of

PLPs that appear in each primitive. An element in a primitive

consists of a pin that represents the input and output of the

element, a conn that represents a fixed connection to another

element, and a cfg that can be used to configure freely the

inside of the circuit. The XDLRC file representing the

xc3s50vq100-5 chip in Figure 2 has a size of 46,143,454

bytes and consists of 1,824,280 lines.

B. Analysis of XDL file

The internal structure of an XDL file is largely composed

of three sections: design, instance, and net as shown in

Figure 6. The design section, which is located at the top of

the file, shows the name of the design and the FPGA device

information. The instance section describes the primitive

instance information of a primitive_site in a specific tile,

which includes the instance name, the type of the instanced

primitive, and the layout information in the chip, which

shows the primitive_sites of specific tiles. Next, there is a cfg

string that shows the internal element configuration

according to the type of the instanced primitive. The cfg also

shows the type of PLP used in the primitive and the currently

used option of PLP. Finally, the net section at the bottom

shows the inpin and outpin information and PIP information.

The inpin and outpin are determined by the pinwire of the

instanced primitive. This section declares the PIPs required

to connect from the first outpin to the final inpin using conns,

which are fixed connections with external tiles. Figure 7

shows the result of implementing a circuit by combining the

PLPs and PIPs of the instance and the net sections of the

XDL. Whether to use primitive_sites inside a tile is

determined by the circuit to be implemented. The red line in

Figure 7 indicates the currently used primitives among the

various primitives in the tile, and the currently used options

of PLP and PIP among the various options.

C. Analysis of BIT file

The internal netlist information is stored in external

memory as a bitstream. The bitgen command of the ISE

design tool is used to create a BIT file in binary format. To

convert a binary file into a human-readable file using ASCII

code, a raw bit file is created using the -b option and this file

is used for reverse engineering. A raw bit file consists of

13,681 lines of 32 bits per line, and the entire file is divided

into a command section, configuration data section, and

terminal section as shown in Figure 8. The configuration

command section shows commands to inform

TABLE I.

Types and numbers of primitives according to the category of tiles.

Tile Type of primitive
Number of

primitives

GCLK

BSCAN, DCIRESET,

GLOBALSIG, ICAP, BUFGMUX,

CAPTURE, DCI, PMV, STARTUP,

DCM, VCC, RESERVED_LL

12

CLB
SLICEL, SLICEM, VCC,

RESERVED_LL
4

IOB

DIFFM, DIFFS, IOB,

RESERVED_ANDOR, VCC,

RESERVED_LL

6

Block

RAM
RAMB16, MULT18X18 2

TERM - -

primitive

pin

element
pinwire conn

 PLP1

 PLP2

cfg

 PLP1

 PLP2

 PLP3

cfg

Fig. 5. Internal circuit structure of primitive.

TABLE Ⅱ.

Number of PLPs according to the type of primitive.

Type of

primitive

Number

of PLPs
Type of primitive

Number

of PLPs

BSCAN 0 SLICEL 31

DCIRESET 0 SLICEM 51

GLOBALSIG 1 RESERVED_ANDOR 1

ICAP 3 DIFFM 54

BUFGMUX 4 DIFFS 54

CAPTURE 3 IOB 54

DCI 1 DCM 31

PMV 0 RAMB16 12

STARTUP 3 MULT18X18 3

RESERV_LL 0 VCC 0

Fig. 6. XDL file format.

Tile 1 Tile 2

pinwire

primitive primitive
wire

wire

wire

wire connpip pip wire pip

 PLP1
 PLP2

cfg

 PLP1
 PLP2
 PLP3

cfg

Fig. 7. Reconstruction of the internal circuit according to XDL.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

synchronization, CRC check, and the amount of

configuration data expressed in bitstreams. The

configuration data section stores information about all the

tiles of the FPGA, and analysis of this information is

essential for reverse engineering. Bitstreams are arranged

sequentially by the type of tiles in the same way as the chip

configuration. One frame consists of 37 lines, and the

number of frames represented as bitstreams is fixed for each

tile category. The terminal section is located at the end of the

raw bit file, and it consists of CRC check section and desync

section, which terminates synchronization with the external

memory.

III. REVERSE ENGINEERING

Reverse engineering must be performed using the

information stored in the files analyzed in section II. Figure

9 shows the algorithm of reverse engineering. First, the

mapping table of PLP and PIP is created by using BIT, XDL,

and XDLRC files. Then, reconfiguration is performed to

generate the XDL file by using the mapping table and

bitstreams.

A. Mapping table generation

As the PLP and PIP have different bitstreams depending

on the configuration options, the bitstreams for all

configurable options must be generated and compared by

modifying the XDL. Furthermore, the process of arranging

the comparison result of raw bit files into a mapping table is

essential for reverse engineering.

First, an XDL file applying the configurable options of all

PLPs must be generated for each primitive to create a

mapping table of PLPs. For example, SLICEL has 31 PLPs

and the 31 PLPs have 1 to 7 options excluding #OFF. Hence,

a total of 89 XDL files are required to create a mapping table

for SLICEL. The number of XDL files to be generated

according to each primitive is hundreds for PLPs and

thousands for PIPs. Thus, an XDL generator can be created

to generate XDL files automatically by applying the options

of each PLP. Figure 10 shows a flowchart of the algorithm

of the XDL generator. The inputs of the XDL generator are

the original XDL file and the target primitive type, and the

output is the XDL file with changed options of each PLP

belonging to the target primitive. Figure 11 illustrates the

behavior of the XDL generator with an example of FFX

when the PLP has three options: #OFF, #FF, and #LATCH.

Figure 11 (a) shows the cfg string representing SLICEL in

the original XDL file, and the options of FFX are determined

by the red squared part. Figure 11 (b) shows the cfg of XDL

files with FFX options changed to #OFF, #FF, and #LATCH.

The XDL files with the PLP or PIP options changed one

by one are first converted to NCD and then used to generate

bitstream files. A mapping table for bitstream files is created

by comparing bitstream files with the #OFF option

indicating that PLP is not used and with other options

indicating that PLP for each PLP and checking the bits that

have changed. To compare between bitstream files, 13,681

lines of bitstreams with each line consisting of 32 bits must

be compared for the number of times excluding the #OFF

option of the target PLP or PIP. For this task, a bitstream

Fig. 8. Raw bit file format.

XDL file XDLRC

Mapping

Table

Reversed

NCD file

xdl2ncd

Reversed

XDL file

RBT

comparator

generate .rbt files

Reconfiguration

XDL

generator

BIT file

Fig. 9. Algorithm of reverse engineering.

Start

 Input: .xdl file, target primitive

Search target primitive in XDL

Change the option of the target
PLP or PIP

Generate revised XDL files

.xdl file

Fig. 10. Algorithm of XDL generator.

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31 ,

 cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

 CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

 F::#OFF F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

 FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

 FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

 XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "
(a)

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31 ,

 cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

 CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

 F::#OFF F5USED::#OFF FFX::#LATCH FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

 FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

 FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

 XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31 ,

 cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

 CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

 F::#OFF F5USED::#OFF FFX::#FF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

 FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

 FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

 XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

inst "dff2/Q<0>" "SLICEL",placed R1C1 SLICE_X0Y31 ,

 cfg " BXINV::#OFF BYINV::BY CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF

 CY0G::#OFF CYINIT::#OFF CYSELF::#OFF CYSELG::#OFF DXMUX::#OFF DYMUX::#OFF

 F::#OFF F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF

 FFY::#OFF FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF

 FXUSED::#OFF G::#OFF GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::#OFF

 XBUSED::#OFF XUSED::#OFF YBUSED::#OFF YUSED::#OFF "

(b)

Fig. 11. Operation of XDL generator; (a)original XDL file

(b)modified XDL files.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

comparator that performs this comparison automatically

must be used. Figure 12 shows the algorithm for the overall

operation of the bitstream (BIT) comparator. The inputs are

the entire raw bit file and the target primitive. By comparing

the bitstreams with the #OFF option applied for all PIPs and

PLPs and the raw bit file with the other options, mapping

table for PLPs and PIPs for each primitive can be created as

shown in Figure 13. The PLP, the position of the bit, the bit

value of the OFF option, and the bit value of the option

appear in this order. For example, among the PLPs of the

IOB tile in Figure 13, the position where the bit for

TFF2_INIT_ATTR appears is 216_16, the bit value of the

OFF option is 0, and the bit value of the INIT0 option is 1.

It is worthwhile to notice that the proposed reverse

engineering is more efficient compared to Bit2ncd [5].

Whereas Bit2ncd[5] constructs all the possible network to

recover a single PIP, the proposed method construct a branch

of an entire network, and thus it can highly save a time to

build the PIP mapping table by reducing searching space.

B. Circuit reconstruction

The aim for circuit reconstruction is to convert a raw bit

file into an XDL file based on the created mapping table. It

is required to know which of the PLP and PIP options were

used in order to perform this conversion. The bits that appear

in the raw bit file to be converted are searched in the mapping

table created earlier. In this searching process based on the

position of the bit, the position of the tile, the type of

primitive, the used PLP or PIP, and the used options can be

observed. However, if the PLP option has the same bit

representation as the PLP option of #OFF, the recovery

becomes more complicated since no bit difference appears

when it is compared with the basic XDL file. In this case, the

option of the PLP to be used must be selected by comparing

it with the options of other PLPs that are already represented

as bits. For example, if an option other than #OFF is

represented by the bit FFX_INIT_ATTR, FFX can be

declared only if an option other than the #OFF option is

selected. Therefore, it must be considered that the #FF

option having the same bit representation as the #OFF option

among the FFX options was used.

IV. EXPERIMENTAL RESULTS

The bitstream of the 64-bit LFSR circuit in Figure 14

implemented in an xc3s50 device among the Spartan-3

FPGAs was restored to an XDL file through the XDL

recovery process using a mapping table. The 64-bit LFSR in

Figure 15 mapped on xc3s50 device using 16 CLB tiles, 34

IOB tiles, and 1 BUFGMUX tile for GCLK. When the

bitstream file representing a 64-bit LFSR in Figure 14 is

compared with a raw bit file with no declaration of PLP and

PIP, the position of a bit with a different bit representation

must first be determined. Figure 15 shows part of the XDL

file restored by performing XDL recovery based on the

mapping table with the entire basic raw bit file. However, in

the state immediately after the restoration based on the

mapping table, the options having the same bit

representation as the #OFF option cannot be restored. These

options must be determined by comparing them with the

options of other PLPs that appear in the bit representations.

Finally, after recovering the PLP options that did not appear

when compared with the default raw bit file, the original and

restored XDL files are 88% identical to each other. The

recovery ratio is calculated based on whether the number of

restored 1’s among all 1’s in a bitstream. Although it is

hardly to say 88% LFSR can works as an original LFSR, the

Start

 Input: .rbt file, target primitive

Collect .rbt files

Compare the bitstreams

Extract control bits and control
value

Mapping table

Fig. 12. Algorithm of BIT comparator.

Fig. 13. Mapping table of I/O tile.

S0 S1 SN-1

g0 g1 gN-1

S0[i] S1[i] SN-1[i]

F[i]

gN

Fig. 14. 64-bit LFSR circuit when N = 64.

(a)

(b)

Fig. 15. Part of (a) original XDL file and (b) recovered XDL file for

64-bit LFSR.

(a) (b)

Fig. 16. (a) Original circuit and (b) recovered circuit based on

recovered XDL file

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

recovered XDL definitely help to estimate the target design

as a LFSR. When the generated XDL file is converted into

an NCD file using the xdl2ncd command of the ISE design

tool, Fig. 16 shows the result of mapping the converted NCD

file to the circuit. The recovered netlist by the proposed

reverse engineering is nearly perfect recovered from a

graphical view point.

V. CONCLUSIONS

A reverse engineering tool focused on PIP and PLP

recovery was implemented, and the process of reverse

engineering and the operation of the automation tools

required in each step were described. When a 64-bit LFSR

was restored using reverse engineering tools and Xilinx ISE

design tools focused on PIP and PLP restoration, 88% of the

total circuits could be restored. Reverse engineering tools

have been actively developed using the ISE design tool, and

their recovery rates are up to 80%. Therefore, even if the

bitstreams of the external memory are attacked, whether the

circuit information has been damaged can be determined.

For a further study, a reverse engineering tool for 7-series

FPGA chips using Vivado will be developed to enlarge a

reverse engineering area.

ACKNOWLEDGMENT

This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (NRF-2019M3F3A1A01074448), and

EDA tools were supported by IDEC, Korea .

REFERENCES

[1] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, "Recent

Advances in FPGA Reverse Engineering," Electronics,

vol. 7, no. 10, 2018.

[2] M. Wirthlin, "High-Reliability FPGA-Based Systems:

Space, High-Energy Physics, and Beyond,"

in Proceedings of the IEEE, vol. 103, no. 3, pp. 379-389,

March 2015.

[3] J.-B. Note and É . Rannaud, "From the bitstream to the

netlist," in Proc. 16th Int. ACM/SIGDA Symp. FPGA, vol.

8, pp. 264-264, 2008.

[4] F. Benz, A. Seffrin, and S. A. Huss, "Bil: A tool-chain

for bitstream reverse-engineering," in 22th International

Conference on Field Programmable Logic and

Applications (FPL), Aug. 2012, pp. 735-738.

[5] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, "Deriving an

NCD file from an FPGA bitstream: Methodology,

architecture and evaluation," Microprocessors and

Microsystems, vol. 37, no. 3, pp. 299-312, 2013.

[6] J. Yoon et al., "A Bitstream Reverse Engineering Tool

for FPGA Hardware Trojan Detection," in Proceedings

of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pp. 2318-2320, 2018.

[7] T. Zhang, J. Wang, S. Guo, and Z. Chen, "A

Comprehensive FPGA Reverse Engineering Tool-Chain:

From Bitstream to RTL Code," IEEE Access, vol. 7, pp.

38379-38389, 2019.

[8] Lavin, Christopher, et al. "Rapid prototyping tools for

FPGA designs: RapidSmith." 2010 International

Conference on Field-Programmable Technology. IEEE,

2010.

[9] Lavin, Christopher, et al. "Rapidsmith: Do-it-yourself

cad tools for xilinx fpgas." 2011 21st International

Conference on Field Programmable Logic and

Applications. IEEE, 2011.

[10] Malhotra, Shawn, et al. "The quartus university

interface program: enabling advanced fpga research." In

Proceedings of 2004 IEEE International Conference on

Field-Programmable Technology (IEEE Cat. No.

04EX921), 2004.

[11] M. Jeong, J. Lee, E. Jung, Y. H. Kim and K. Cho,

"Extract LUT Logics from a Downloaded Bitstream

Data in FPGA," 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5.

[12] Moradi, Amir, et al. "On the vulnerability of FPGA

bitstream encryption against power analysis attacks:

extracting keys from xilinx Virtex-II FPGAs."

Proceedings of the 18th ACM conference on Computer

and communications security. ACM, 2011.M. Young,

The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

So Yeon Choi received the B.S.

degree in electronics engineering

from Chungnam National

University, Daejeon, Korea, in

2018.

Her main interests are VLSI for

error correction codes and FPGA

reconfiguration.

Ji Woon Park is working

toward the B.S. degree in

electrical engineering from

Chungnam National University,

Daejeon, Korea, in 2020.

His main interests are VLSI for

error correction codes and FPGA

reconfiguration.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.1, Jan. 2020 http://www.idec.or.kr

Ho Young Yoo received the B.S.

degree in electrical & electronics

engineering from Yonsei University,

Seoul, Korea, in 2010. He received

the M.S. and Ph.D. degree in

electronic engineering from KAIST

in 2012 and 2016. Since 2016, he has

been with the department of

Electronics Engineering, Chungnam

National University, Daejeon,

Korea, where he is now an Assistant Professor.

His research interests are VLSI for 5G communication

systems and VLSI for Machine Learning Accelerators.

