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Abstract - In this study, we propose a power conversion circuit 

capable of self-compensation for the organic light emitting 

diode (OLED) based light therapy and optical platform. In 

order to compensate for degradation caused by a long time 

operation of the OLED, a constant-current driving of the 

OLED should be used instead of constant-voltage driving of the 

OLED. To increase the efficiency of the OLED lamp driver, a 

single-stage structure which is combined power stage and 

OLED current driving stage, is suggested. Also, the SenseFET-

based current sensor is used for accurate, continuous, and 

lossless current sensing. This study was conducted based on the 

TSMC 180-nm BCD process and implemented a high-efficiency 

OLED driving system with 2V supply voltage, an efficiency of 

90.9% at 1MHz. 

 

Keywords—Lossless-current sensor, OLED lamp 

driver, Wearable light therapy device 

 

I. INTRODUCTION 

Human attachment therapy device is in the spotlight as the 

next-generation medical treatment method. Among them, 

light therapy is a promising treatment with advantages of 

non-invasive, patient safety, and no side effects. Therefore, 

researches for light therapy have been conducted for a long 

time. In particular, there have been many research results in 

the field of skin wound promotion, and in practice, the 

medical field uses light therapy as a treatment. In recent 

years, beyond wound treatment, the effectiveness of light 

therapy in various areas, such as insomnia and dementia 

prevention, has been revealed. [1] As a result, the benefits of 

light therapy have become prominent, and research on 

making light platforms related to it has also been in the 

spotlight. [2] 

In the past, light therapy treatments have been conducted 

using light-emitting diode (LED) as a light source. However, 

in the case of point light sources such as LEDs, it is difficult 

to irradiate uniform light over a large area and has a local 

heating problem which is hazardous to the human body. 

Therefore, in order to obtain the uniform light in a large area, 

the size of the light source becomes large. In addition, since 

the material is hard, it is difficult to make a flexible form, 

which is difficult to attach to the human body. Until now, 

because of these characteristics, light therapy devices are 

large equipment which is installed in hospitals. However, as 

the effect of light therapy is remarkable, the demand for 

small-sized homecare devices or wearable devices increases.  

An OLED, which is being commercialized in recent years, 

is a new light source of wearable light therapy devices. As 

an OLED can be manufactured in a thin film, it has a form 

of a surface light source and flexibility. In addition, OLED 

light sources can operate at lower power than conventional 

LED light sources, so they can be used in portable devices 

using batteries. The OLED basically has similar current-

voltage characteristics with diodes, and the luminance of the 

OLED is proportional to the density of the OLED current. 

However, OLEDs are vulnerable to the heat generated by 

Joule heating due to their physical properties of using 

organic materials to emit light. In the end, a threshold 

voltage of the OLED increases by joule heating. If the OLED 

drives at the constant voltage, the current density of the 

OLED decreases, and the luminance decrease. Therefore, to 

use the OLED as a light source of the wearable light therapy 

device, it is important to control the current of the OLED 

accurately.  

A small-sized and flexible battery is suitable in the 

wearable light therapy device [3]. However, the flexible 

battery has limited voltage levels and capacities. Fig. 1. (a) 

shows the wearable light therapy device consisting of a 

flexible battery and the OLED as a light source. Because the 

flexible battery has a low voltage level, to drive the OLED, 

which has a large threshold voltage, a voltage conversion 

stage is needed before the OLED-current driving. This 
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Fig. 1. (a) Concept and (b) requirements of wearable light therapy devices. 
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cascaded structure consumes large power and limits the 

battery life. So, the energy-efficient OLED-current driving 

technique is required for the wearable light therapy device. 

In this paper, we propose a high-efficient OLED-current 

driving circuit that can control the OLED current accurately 

and efficiently. 

II. SYSTEM ARCHITECURE 

A. Voltage-conversion stage of the OLED lamp driver 

As shown in Fig. 1., an OLED lamp driver for wearable 

light therapy devices consists of a voltage-conversion stage 

and an OLED-driving stage. Fig. 2. (a) shows a conventional 

boost converter-based OLED lamp driver. The OLED has a 

large threshold voltage which is typically larger than 5V. Due 

to this large threshold voltage, the voltage level of the 

flexible battery, which is usually lower than 2V, should be 

converted by a boost converter. The boost converter steps up 

the output voltage VOUT by turning on the S1 and S2 

alternatively. In the D phase, S1 is on, and the inductor builds 

up the energy at the rate of VIN/L. Next, in the D’ phase, the 

energy is used to drive the output voltage, VOUT, and the 

inductor current decreases at the rate of (VIN−VOUT)/L. The 

bottom of Fig. 2. (a) shows timing diagrams of the boost 

converter. The voltage stress of power switches is VOUT at the 

boost converter. If more current of the OLED is needed, the 

larger VOUT is required at the voltage conversion stage, and 

this large VOUT incurs the large voltage stress at power 

switches. 

 The single-inductor bipolar-output (SIBO) converter 

mitigates this voltage stress at the voltage-conversion stage. 

The SIBO converter drives the output voltage with a positive 

voltage, VOP, and negative voltage, VON. By using this 

separated output voltage, the voltage stress of the SIBO 

converter is lower than that of the conventional boost 
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Fig. 2. (a) Conventional boost converter based OLED lamp driver [4] and (b) single inductor bipolar output (SIBO) based OLED lamp driver [5]. 
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Fig. 3. Circuit schematic of the OLED-current driving stage  
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converter. The SIBO converter operates in three phases 

which are D1, D2, and D3. The bottom of Fig. 2. (b) shows 

timing diagrams of the SIBO converter. In the D1 phase, S1 

and S2 switches are on, and the inductor builds up the energy 

at the rate of VIN/L. In the D2 phase, the VOP is derived by 

the energy of the inductor, and the inductor current decreases 

at the rate of (VIN-VOP)/L. Finally, at the D3 phase, VON is 

derived through the rest energy of the inductor, which 

remains after driving the VOP, and the inductor current 

decreases at the rate of VON/L. 

 

B. OLED-current driving stage of the OLED lamp driver 

 

For maintaining the constant and uniform luminance of 

the light therapy device, the current of the OLED should be 

regulated, as explained in the introduction. However, the 

voltage conversion stage of the OLED lamp driver regulates 

the output voltage, not the current of the OLED. Therefore, 

the OLED-current driving stage is needed to regulate the 

current of the OLED. In the OLED-current driving stage, a 

current regulation element (CRE) such as a resistor is used, 

and the voltage drop at the CRE incurs the additional power 

loss. This power loss becomes significant when a large 

OLED current is needed. Fig. 3. shows the detailed OLED-

current driving circuit consisting of a PMOS feedback loop 

and a resistor, RF. The VDD of the OLED-current driving 

stage is the regulated output voltage of the voltage-

conversion stage. The PMOS feedback loop makes the 

voltage of RF as VCtrl and regulates the current flows through 

the RF as VCtrl/RF. At the same time, the same amount of 

current flows through the OLED. Therefore, the current of 

the OLED is regulated as VCtrl/RF. However, this topology 

makes the voltage drop at the load because the CRE is 

connected in series. To regulate the OLED current exactly, 

the loop gain of the PMOS feedback look should be large, 

and typically 250mV of the voltage drop is needed. This 

voltage drop makes additional power loss at the OLED-

current-driving stage. 

 

C. Proposed OLED lamp driving circuit 

 

In this study, a boost converter structure is used to drive 

the OLED with a high threshold voltage over 5V using a low 

input voltage lower than 2V. Fig. 4. (a) shows block 

diagrams of the proposed OLED lamp driver. The proposed 

OLED lamp driver removes the additional power loss which 

is consumed while regulating the OLED current by directly 

controlling the load current at the voltage-conversion stage 

without the need for any additional current-regulation 

element (CRE). Fig. 4. (b) shows the relation between the 

inductor current and the load current at the boost converter. 

In the boost converter, the inductor current is transferred to 

the load only at D’ phase through the S2 switch. So the 

transferred current through the S2 switch, which is IS2, is the 

same as the inductor current at the D’ phase, and no current 

flows at the D phase. Therefore, the load current is the same 

as the average value of the IS2 during a period. As Fig. 4. (a), 

we can regulate the load current, which is the same as the 

OLED current using the current sensor at the S2 switch and 

the low-pass filter. 

An accurate and lossless current sensor is required at the 

S2 switch to regulate the load current without the current 

regulation element. Fig. 5. shows the SenseFET [4] based 

current sensor. A PMOS feedback loop makes the source 

voltage of the SenseFET as VOUT. Because the drain of the 

S2 switch and SenseFET are tied together, the SenseFET 

senses the the current which flows through the S2 switch as 

the size ratio between S2 and SenseFET. For minimizing the 
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Fig. 5. SenseFET based current sensor [6] 
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wasted energy at the current sensor, the size ratio between 

the SenseFET and the S2 switch is set to one over one 

hundred. For accurate-current sensing, the amplifier of the 

current sensor should have large bandwidth and enough gain. 

The folded-cascode amplifier with a source follower buffer 

is used to obtain high gain and large bandwidth. 

Fig. 6. shows the overall circuit schematic of the proposed 

OLED lamp driver. The LDMOS power switches are used 

due to large voltage stress to drive the OLED, which has a 

large threshold voltage. The current which flows through the 

S2 is sensed and converted to VSENSE by RSENSE, and then, the 

VSENSE is averaged by passive low pass filter. Finally, we can 

achieve the load current data through the average value of 

VSENSE, which is K∙ILOAD, where the K is RSENSE/100. By 

using this sensed ILOAD value as an input of the error 

amplifier EA, the duty ratio of the boost converter operation 

is determined, and the load current is regulated to reference 

value.  
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Fig. 6. The overall circuit schematic of the proposed OLED lamp driver and its timing diagrams 

 
 
 

Fig. 7. Waveform of inductor current and VSENSE value  
 
 
 
 
 

 
 

(a)  ILOAD = 108mA 
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(c)  ILOAD = 50mA 
 

Fig. 8. Waveforms of the load current regulation at VIN changes from 

1.8V to 2.0V at RLOAD is 100Ω. 
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III. RESULTS AND DISCUSSIONS 

 

Fig. 7. shows measured waveforms of the current sensor 

and the inductor current. The yellow line is the inductor-

current waveform of the proposed OLED lamp driver, and 

the black line is the VSENSE waveform of the current sensor. 

Because the current flows through the S2 switch only at the 

D’ phase, the Fig. 7. shows that the black line follows the 

yellow line closely at the D’ phase at 1MHz switching 

frequency. Fig. 8. shows the measured waveforms of 

regulated load current changing the VIN between 1.8V and 

2V. It presents that the proposed OLED lamp driver operates 

successfully at the load current of 50mA, 60mA, and 108mA 

when the RLOAD is 100Ω. The chip which is fabricated in a 

TSMC 180-nm BCD process is shown in Fig. 9., and it 

occupies an area of 1.5mm×2.5mm. The Fig. 10. shows the 

measured efficiency of the proposed OLED lamp driver at 

RLOAD is 100Ω. The measured peak efficiency is 90.9% at 

ILOAD is 90mA. 

 

 

 

 

IV. CONCLUSIONS 

 

In this paper, we present an energy-efficient OLED lamp 

driver for a light therapy device. The additional current 

regulation element, which is used for regulating the OLED 

current, is removed by combining the voltage conversion 

stage and the OLED-current regulation stage into a single 

stage. An accurate and lossless SenseFET based current 

sensor regulates the OLED current at the voltage conversion 

stage. Therefore, the additional power loss which occurs at 

the load is removed, and 90.9% of the peak efficiency is 

achieved at the ILOAD of 90mA when RLOAD is 100Ω. 
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