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Abstract - In this study, we propose a power conversion circuit
capable of self-compensation for the organic light emitting
diode (OLED) based light therapy and optical platform. In
order to compensate for degradation caused by a long time
operation of the OLED, a constant-current driving of the
OLED should be used instead of constant-voltage driving of the
OLED. To increase the efficiency of the OLED lamp driver, a
single-stage structure which is combined power stage and
OLED current driving stage, is suggested. Also, the SenseFET-
based current sensor is used for accurate, continuous, and
lossless current sensing. This study was conducted based on the
TSMC 180-nm BCD process and implemented a high-efficiency
OLED driving system with 2V supply voltage, an efficiency of
90.9% at 1MHz.
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1. INTRODUCTION

Human attachment therapy device is in the spotlight as the
next-generation medical treatment method. Among them,
light therapy is a promising treatment with advantages of
non-invasive, patient safety, and no side effects. Therefore,
researches for light therapy have been conducted for a long
time. In particular, there have been many research results in
the field of skin wound promotion, and in practice, the
medical field uses light therapy as a treatment. In recent
years, beyond wound treatment, the effectiveness of light
therapy in various areas, such as insomnia and dementia
prevention, has been revealed. [1] As a result, the benefits of
light therapy have become prominent, and research on
making light platforms related to it has also been in the
spotlight. [2]

In the past, light therapy treatments have been conducted
using light-emitting diode (LED) as a light source. However,
in the case of point light sources such as LEDs, it is difficult
to irradiate uniform light over a large area and has a local
heating problem which is hazardous to the human body.
Therefore, in order to obtain the uniform light in a large area,
the size of the light source becomes large. In addition, since
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Fig. 1. (a) Concept and (b) requirements of wearable light therapy devices.

the material is hard, it is difficult to make a flexible form,
which is difficult to attach to the human body. Until now,
because of these characteristics, light therapy devices are
large equipment which is installed in hospitals. However, as
the effect of light therapy is remarkable, the demand for
small-sized homecare devices or wearable devices increases.

An OLED, which is being commercialized in recent years,
is a new light source of wearable light therapy devices. As
an OLED can be manufactured in a thin film, it has a form
of a surface light source and flexibility. In addition, OLED
light sources can operate at lower power than conventional
LED light sources, so they can be used in portable devices
using batteries. The OLED basically has similar current-
voltage characteristics with diodes, and the luminance of the
OLED is proportional to the density of the OLED current.
However, OLEDs are vulnerable to the heat generated by
Joule heating due to their physical properties of using
organic materials to emit light. In the end, a threshold
voltage of the OLED increases by joule heating. If the OLED
drives at the constant voltage, the current density of the
OLED decreases, and the luminance decrease. Therefore, to
use the OLED as a light source of the wearable light therapy
device, it is important to control the current of the OLED
accurately.

A small-sized and flexible battery is suitable in the
wearable light therapy device [3]. However, the flexible
battery has limited voltage levels and capacities. Fig. 1. (a)
shows the wearable light therapy device consisting of a
flexible battery and the OLED as a light source. Because the
flexible battery has a low voltage level, to drive the OLED,
which has a large threshold voltage, a voltage conversion
stage is needed before the OLED-current driving. This
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cascaded structure consumes large power and limits the
battery life. So, the energy-efficient OLED-current driving
technique is required for the wearable light therapy device.
In this paper, we propose a high-efficient OLED-current
driving circuit that can control the OLED current accurately
and efficiently.

Il. SYSTEM ARCHITECURE

A. Voltage-conversion stage of the OLED lamp driver

As shown in Fig. 1., an OLED lamp driver for wearable
light therapy devices consists of a voltage-conversion stage
and an OLED-driving stage. Fig. 2. (a) shows a conventional
boost converter-based OLED lamp driver. The OLED has a
large threshold voltage which is typically larger than 5V. Due
to this large threshold voltage, the voltage level of the
flexible battery, which is usually lower than 2V, should be
converted by a boost converter. The boost converter steps up
the output voltage Vour by turning on the S; and S,
alternatively. In the D phase, S; is on, and the inductor builds
up the energy at the rate of Vin/L. Next, in the D' phase, the
energy is used to drive the output voltage, Vour, and the
inductor current decreases at the rate of (Vin—Vour)/L. The
bottom of Fig. 2. (a) shows timing diagrams of the boost
converter. The voltage stress of power switches is Voyrat the
boost converter. If more current of the OLED is needed, the
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Fig. 3. Circuit schematic of the OLED-current driving stage

larger Vour is required at the voltage conversion stage, and
this large Vour incurs the large voltage stress at power
switches.

The single-inductor bipolar-output (SIBO) converter
mitigates this voltage stress at the voltage-conversion stage.
The SIBO converter drives the output voltage with a positive
voltage, VOP, and negative voltage, VON. By using this
separated output voltage, the voltage stress of the SIBO
converter is lower than that of the conventional boost
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Fig. 2. (a) Conventional boost converter based OLED lamp driver [4] and (b) single inductor bipolar output (SIBO) based OLED lamp driver [5].
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converter. The SIBO converter operates in three phases
which are Dy, D, and Ds. The bottom of Fig. 2. (b) shows
timing diagrams of the SIBO converter. In the D; phase, S1
and S2 switches are on, and the inductor builds up the energy
at the rate of Vin/L. In the D, phase, the Vop is derived by
the energy of the inductor, and the inductor current decreases
at the rate of (Vin-Vop)/L. Finally, at the D3 phase, Vox is
derived through the rest energy of the inductor, which
remains after driving the Vop, and the inductor current
decreases at the rate of Von/L.

B. OLED-current driving stage of the OLED lamp driver

For maintaining the constant and uniform luminance of
the light therapy device, the current of the OLED should be
regulated, as explained in the introduction. However, the
voltage conversion stage of the OLED lamp driver regulates
the output voltage, not the current of the OLED. Therefore,
the OLED-current driving stage is needed to regulate the
current of the OLED. In the OLED-current driving stage, a
current regulation element (CRE) such as a resistor is used,
and the voltage drop at the CRE incurs the additional power
loss. This power loss becomes significant when a large
OLED current is needed. Fig. 3. shows the detailed OLED-
current driving circuit consisting of a PMOS feedback loop
and a resistor, Rr. The VDD of the OLED-current driving
stage is the regulated output voltage of the voltage-
conversion stage. The PMOS feedback loop makes the
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Fig. 4. (a) Block diagrams of the proposed OLED lamp driver using boost
converter (b) relation between the inductor current and the load current at
the boost converter
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voltage of Rr as Vi and regulates the current flows through
the Rr as Vcu/Re. At the same time, the same amount of
current flows through the OLED. Therefore, the current of
the OLED is regulated as Vcw/Re. However, this topology
makes the voltage drop at the load because the CRE is
connected in series. To regulate the OLED current exactly,
the loop gain of the PMOS feedback look should be large,
and typically 250mV of the voltage drop is needed. This
voltage drop makes additional power loss at the OLED-
current-driving stage.

C. Proposed OLED lamp driving circuit

In this study, a boost converter structure is used to drive
the OLED with a high threshold voltage over 5V using a low
input voltage lower than 2V. Fig. 4. (a) shows block
diagrams of the proposed OLED lamp driver. The proposed
OLED lamp driver removes the additional power loss which
is consumed while regulating the OLED current by directly
controlling the load current at the voltage-conversion stage
without the need for any additional current-regulation
element (CRE). Fig. 4. (b) shows the relation between the
inductor current and the load current at the boost converter.
In the boost converter, the inductor current is transferred to
the load only at D’ phase through the S, switch. So the
transferred current through the S, switch, which is Isy, is the
same as the inductor current at the D’ phase, and no current
flows at the D phase. Therefore, the load current is the same
as the average value of the Is; during a period. As Fig. 4. (2),
we can regulate the load current, which is the same as the
OLED current using the current sensor at the S, switch and
the low-pass filter.

An accurate and lossless current sensor is required at the
S2 switch to regulate the load current without the current
regulation element. Fig. 5. shows the SenseFET [4] based
current sensor. A PMOS feedback loop makes the source
voltage of the SenseFET as Vour. Because the drain of the
S2 switch and SenseFET are tied together, the SenseFET
senses the the current which flows through the S, switch as
the size ratio between S; and SenseFET. For minimizing the
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Fig. 5. SenseFET based current sensor [6]
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Fig. 6. The overall circuit schematic of the proposed OLED lamp driver and its timing diagrams

wasted energy at the current sensor, the size ratio between

the SenseFET and the S, switch is set to one over one -
hundred. For accurate-current sensing, the amplifier of the ‘”‘@E' S : ‘ b Ll Sl
current sensor should have large bandwidth and enough gain. g

The folded-cascode amplifier with a source follower buffer
is used to obtain high gain and large bandwidth.

Fig. 6. shows the overall circuit schematic of the proposed
OLED lamp driver. The LDMOS power switches are used
due to large voltage stress to drive the OLED, which has a
large threshold voltage. The current which flows through the
Sy is sensed and converted to Vsense by Rsense, and then, the (@) Il.oap =108mA
Vsense is averaged by passive low pass filter. Finally, we can
achieve the load current data through the average value of B~ e , TS

en :

Vsense, Which is K-l oap, Where the K is Rsgnse/100. By

using this sensed Il oap value as an input of the error
amplifier EA, the duty ratio of the boost converter operation
is determined, and the load current is regulated to reference
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I1l. RESULTS AND DISCUSSIONS

Fig. 7. shows measured waveforms of the current sensor
and the inductor current. The yellow line is the inductor-
current waveform of the proposed OLED lamp driver, and
the black line is the Vsense waveform of the current sensor.
Because the current flows through the S, switch only at the
D’ phase, the Fig. 7. shows that the black line follows the
yellow line closely at the D’ phase at 1IMHz switching
frequency. Fig. 8. shows the measured waveforms of
regulated load current changing the Vn between 1.8V and
2V. It presents that the proposed OLED lamp driver operates
successfully at the load current of 50mA, 60mA, and 108mA
when the Rioap is 100Q. The chip which is fabricated in a
TSMC 180-nm BCD process is shown in Fig. 9., and it
occupies an area of 1.5mmx2.5mm. The Fig. 10. shows the
measured efficiency of the proposed OLED lamp driver at
Rioap is 100Q. The measured peak efficiency is 90.9% at
lLoaD is 90mA.

Fig. 9. Chip micrograph
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Fig. 10. Measured efficiency of the proposed OLED lamp driver at R, oap
is 100Q.
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IV. CONCLUSIONS

In this paper, we present an energy-efficient OLED lamp
driver for a light therapy device. The additional current
regulation element, which is used for regulating the OLED
current, is removed by combining the voltage conversion
stage and the OLED-current regulation stage into a single
stage. An accurate and lossless SenseFET based current
sensor regulates the OLED current at the voltage conversion
stage. Therefore, the additional power loss which occurs at
the load is removed, and 90.9% of the peak efficiency is
achieved at the ILoap of 90mA when Rioap is 100Q.
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