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Abstract – In this paper, a 2.4 GHz low-power low-IF receiver 

employing a dual-mode demodulator for on-off keying (OOK) 

and frequency-shift keying (FSK) signals is presented for 

Internet of Things (IoT) applications. The switched dual-mode 

demodulator can demodulate both OOK and FSK signals. The 

proposed receiver consists of a low-noise transconductance 

amplifier, single-balanced current-mode passive mixer, 

transimpedance amplifier, variable gain amplifier, and dual-

mode demodulator. The proposed receiver was designed in a 65-

nm CMOS process and mainly simulated at 2.4 GHz. The 

receiver achieves a noise figure of 9.9 dB, a maximum 

conversion gain of 74 dB, and an input-referred third-order 

intercept point of −26.3 dBm. The active die area of the 

designed receiver is 0.53 mm2, and it draws a bias current of 1.8 

mA from a nominal supply voltage of 1 V. 
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I. INTRODUCTION 

The Internet of Things (IoT) is a technology that collects, 

stores, and analyzes data using sensors and communication 

on various devices. Developing a technology that can be 

used permanently without battery replacement is one of the 

most important issues in IoT sensors. Generally, a wireless 

communication system is the most power-consuming block 

in IoT sensors. In order to minimize the power consumption 

of the wireless communication system, researches on the 

duty-cycle-based transceiver architecture that turns on the 

transceiver only at a certain time and the transceiver 

architecture based on the ultra-low power wake-up radio are 

being actively conducted [1]‒[4]. Because IoT transceivers 

do not require a high data rate, simple modulation schemes 

such as on-off keying (OOK) or frequency-shift keying 

(FSK) are mainly used. 

In this paper, a 2.4 GHz low-power low-IF receiver 

employing a dual-mode demodulator, which can demodulate 

both OOK and FSK signals is proposed for IoT applications. 

Section II presents the proposed low-power low-IF receiver 

architecture and detailed circuit designs. Simulation results 

are shown in Section III. Finally, Section IV concludes the 

paper. 
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Fig. 1. Block diagram of the proposed receiver. 

II. CIRCUIT IMPLEMENTATION 

Fig. 1 shows the block diagram of the proposed low-

power low-IF receiver with a dual-mode demodulator. The 

proposed receiver consists of a low-noise transcondutance 

amplifier (LNTA), single-balanced current-mode passive 

mixer, transimpedance amplifier (TIA), variable gain 

amplifier (VGA), and dual-mode demodulator. 

A current-reused resistive feedback LNTA is shown in 

Fig. 2. The resistive feedback LNTA can perform an input 

impedance matching without a bulky degeneration on-chip 

inductor. The current-reuse technique increases the voltage 

gain and reduces the noise figure (NF) with the same current 

consumption as the conventional common-source (CS) 

amplifier because the effective transconductance (gm) 

becomes gm1 + gm2 [5]. The RF provides the real part of the 

resistive feedback LNTA input impedance. The gate biasing 

for M1 and M2 are separated to support low supply voltage. 

[6]. The proposed RF LNTA also adopts an input matching 

network composed of L1 and C1 to take advantage of the 

gain-boosting property of an inductor-degenerated CSLNA 

(L-CSLNA). The input impedance of the RF LNTA 

RIN_RFLNTA is (RF + RoLNTA) / (1 + gmLNTARoLNTA), where gmLNTA 

is gm1 + gm2 and RoLNTA is ro1 // ro2 // RIN_MIXER. The equivalent 

input matching network can be converted from a parallel RC 

to series RC network with a narrow frequency band of 

interest. Therefore, the proposed RF LNTA performs input 
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power matching with a series RLC network. The overall gm 

of the proposed RF LNTA is effectively boosted by √(1+Q2) 

[7]. The series capacitance CSER and series resistance RSER in 

the converted series RLC network are expressed as (Cgs + 

C1)(1 + 1/QL
2) and (RF + RoLNTA) / [(1 + gmLNTARoLNTA)(1 + 

QL
2)], respectively. When the L1 and CSER values are set to 

resonate at 2.4 GHz, the input impedance of the proposed 

LNTA is RSER, which is equal to a source resistance RS. 

Therefore, QL is ωoL1/RS for the operation frequency of ωo. 

The overall transconductance of the proposed LNTA from VS 

to the LNTA output current is given to  

2 21 11

2 2

L L

mLNTA mLNTA mLNTA

F

Q Q
G g g

R

+ + 
= −  

 
   (1) 

It can be known from (1) that the current-reused RF LNTA 

has a large effective transconductance. 

The current-mode single-balanced passive mixer with 

50 % duty-cycle local oscillator signal is used for down-

conversion. It is shown in Fig. 3. An operational amplifier 

(OPAMP)-based TIA is used for current-to-voltage 

conversion and the first-order OB blocker filtering. A 

modified feedforward (FF) op-amp is utilized due to its 

inherent wideband characteristic [8]. From the FF op-amp, 

an intrinsic zero from the FF path compensates the phase of 

the op-amp without Miller capacitance and accordingly 

extends the bandwidth of the op-amp. Fig. 4 shows a 

schematic of a modified FF OPAMP. As the main and FF 

paths are depicted in Fig. 4, the first, second, and FF 

amplifier stages are given by M1–2, M7–8, and M5–6, 

respectively. It is noted that the second stage also acts as an 

active load of the FF stage so that the extra second stage with 

a separate current branch is not necessary. Therefore, the 

internal poles and zeros generated by the parasitic can be  

RF

M2

VDD

M1

VB

CB

VIN VOUT

CB

 
Fig. 2. Current-reused resistive-feedback LNTA 
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Fig. 3. Single-balanced current-mode passive mixer with TIA 

reduced, and this improves the bandwidth of the modified FF 

structure. The small input impedance of the TIA can limit the 

voltage swing at the input and output of the mixer which 

enhances the linearity. 

The conversion gain of the receiver RF front-end from VS 

to the TIA output voltage is expressed as 

21 L

VRFFE mLNTA FTIA

Q
A g R



+
             (2) 

where RFTIA is a feedback resistor of the TIA. 
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Fig. 4. Modified FF OPAMP 
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Fig. 5. Two-stage OPAMP-based VGA 

The schematic of VGA is presented in Fig. 5. The two-

stage OPAMP-based baseband amplifier is designed to have 

sufficient gain and dynamic range. The FF OPAMP shown 

in Fig. 4 is also used in VGA. 

A switched dual-mode demodulator supporting both OOK 

and FSK demodulations is presented in Fig. 6. The 

demodulator scheme is selected according to the input 

modulation signal. The schematic of the FSK demodulator is 

presented in Fig. 6(a). The energy charging capacitor CB is 

charged and discharged with on-and-off operations of MP1 

and MN1. If the input frequency is high, each charging and 

discharging time will be short, resulting in a low charged 

voltage across CB. On the other hand, at the low input 

frequency, the higher voltage is charged in CB. The 

comparator compares Vref with the voltage across CB. The 

comparator generates a rail-to-rail signal in the low input 

frequency and a zero voltage signal in the high input 

frequency. The comparator output voltage and delayed FSK 

signal are the input signal and clock of D flip-flop, 

respectively. Because the delayed input signal is used as the 

clock signal, an additional external clock is not required. The 

OOK demodulator is shown in Fig. 6(b). The OOK 

demodulator compares the OOK input signal and the low-

pass filtered OOK signal and determinen logic 0 and 1. 
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III. SIMULATION RESULTS 

The proposed 2.4GHz low power low-IF receiver with a 

switched dual-mode demodulator was designed and 

simulated in a 65-nm process. The layout is shown in Fig. 7. 

The active area is 0.53 mm2 excluding the bond pads. It 

consumes 1.8 mW at a supply voltage of 1V. The power 

breakdown of the proposed receiver according to the 

operating modes is shown in Table Ⅰ. 

Fig. 8 shows simulated S11 of the designed receiver. The 

receiver obtained S11 of less than 10 dB in the frequency 

range of 2-2.7 GHz. The simulated conversion gain of the 

receiver is depicted in Fig. 9. The conversion gain of 74 dB 

is obtained. The simulated NF of the receiver is illustrated in  

TABLE I. Simulated Power Breakdown 

 
Power Consumption 

(OOK) 

Power Consumption 

(FSK) 

LNA 1 mW 

TIA 0.2 mW 

VGA 0.4 mW 

DMD 0.15 mW 0.2 mW 

Total 1.75 mW 1.8 mW 
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Fig. 6. (a) FSK Demodulator (b) OOK Demodulator 

Fig. 10. The obtained NF at the IF frequency of 2 MHz is 9.9 

dB. The simulated input-referred third-order intercept points 

(IIP3) is shown in Fig. 11. The two-tone test conditions for 

IIP3 are f1 = fLO + 5 MHz and f2 = fLO + 8 MHz. The simulated 

IIP3 of –26.3 dBm is obtained. The simulated transient 

response of the receiver according to the modulated signals 

are shown in Fig. 12. The designed dual-mode demodulators 

can demodulate both OOK and FSK signals. 
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Fig. 7. Layout 

 

 
Fig. 8. Simulated S11 

 

Fig. 9. Simulated conversion gain 

 

Fig. 10. Simulated NF 
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Fig. 11. Simulated IIP3 

IF FSK Signal

Charge Pump Out

Demodulator Out

 
(a) 

RF OOK Signal

IF OOK Signal

Demodulator Out

 
(b) 

Fig. 12. Simulated transient response: (a) FSK (b) OOK 

Table Ⅱ summarizes the simulated performances of the 

designed receiver and compares them with those of state-of-

the-art receivers. We use a figure of merit (FOM), which is 

defined as  

FoM( ) ( ) 10log
 1 mW

dc
SEN

P
dB P dBm= − − .       (3) 

This work can support dual-mode demodulations while 

achieving the similar sensitivity performance and FOM.  
 

TABLE Ⅱ. Performance Summary and comparison with previous works 

Reference [9] [10] [11] [12] [13] 
This 

Work* 

Operating 

Frequency 

(GHz) 

5.5-5.8 0.915 2.4 2.44 5.8 2.44 

Process 
40nm 

CMOS 

55nm 

CMOS 

40nm 

CMOS 

65nm 

CMOS 

40nm 

CMOS 

65nm  

CMOS 

Modulation OOK BFSK FSK FSK 
OOK/ 

FSK 

OOK 

/FSK 

Power  

(mW) 
0.217 0.499 1.2 0.22 

0.47/ 

0.49 
1.75/1.8 

Bandwidth 

(MHz) 
2 1 2 2 1 2.4 

NF(dB) 17 N/A 9 22.6 12 9.9 

Sensitivity 

(dBm) 
-82 -99 -82.2 -85 -90 -89 

Area 

(mm2) 
0.151 2.25 1 2.4 0.166 0.53 

FOM 

(dB) 
88.64  99.01  81.41  91.58  90.27  86.57  

*Simulation Results 

IV. CONCLUSION 

A 2.4 GHz low-power low-IF receiver employing a dual-

mode demodulator for OOK and FSK signals is designed in 

65-nm CMOS process for IoT applications. The proposed 

switched dual-mode demodulator can demodulate both OOK 

and FSK signals. The designed receiver achieves a NF of 9.9 

dB, maximum conversion gain of 74 dB, and IIP3 of −26.3 

dBm. 
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