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Abstract – In this paper, we introduced design considerations 

of a wearable brain-computer interface (BCI) that performs a 

target identification algorithm based on linear algebra. Steady-

state visual evoked potential (SSVEP) based wearable BCI have 

been studied to enable paralyzed patients to communicate with 

others. However, performance indicators such as target 

identification accuracy and the information transfer rate (ITR) 

still need to be further improved for wearable devices. This 

paper discusses several considerations for designing algorithms 

and linear algebra accelerating hardware. In the case of target 

identification algorithms, a signal binarization technique and 

candidate reduction technique which are proposed in the 

previous works can be considered in single-channel SSVEP-

based software implementations and multi-channel SSVEP 

processing in hardware to reduce computational complexity, 

respectively. For hardware architecture design, we introduced 

architectural considerations of processing element array that 

can effectively perform various linear algebra operations. 
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I. INTRODUCTION 

Brain-computer interface (BCI) can convert electrical 

signals of brain activity into interpretable information that 

reflects the user's intent [1]-[3]. Because BCI technology 

only requires electrical signals, it can provide a new control 

channel for people with neuromuscular disorders [1], [3]. 

For paralyzed patients, the BCI speller allows the use of 

word processing programs for communication with others. 

BCI techniques can be classified as either invasive or non-

invasive depending on whether the surgery is performed or 

not. In non-invasive BCI, the electroencephalogram (EEG) 

based BCI speller has been widely used in paralyzed patients 

due to its high time resolution, low cost, safety, and wide 

range of applications [4]-[6]. Because spelling systems for 

paralyzed patients require fast and intuitive communication, 

the steady-state visual evoked potential (SSVEP) has been 

widely used [5], [7], [8].  

Recent works on high-speed visual stimuli-based BCI (V-

BCI) systems mainly used electrode array caps with EEG 

recording devices and external signal processing machines. 

This type of BCI spelling system is inconvenient, takes a 

long time to set up, and relies on external computing systems 

[9]. Such systems have a high information transfer rate (ITR), 

but their high cost and large form factor limit their 

practicality in real-world situations. 

In previous study, an in-ear V-BCI was reported in [10]. 

However, the wearable in-ear device of this system only 

acquires the SSVEP signal and transmits raw SSVEP data 

wirelessly with high power consumption [11]. Therefore, 

there is a requirement for an energy-efficient wearable V-

BCI that performs signal processing algorithms on the chip. 

The operation of the wearable V-BCI with its example is 

illustrated in Fig. 1(a). (1) When the user gazes at a blinking 

character on the display, the frequency information of the 

blinking character is reflected in the brain signal (SSVEP). 

(2) SSVEP can be measured in the occipital area of the scalp. 

(3) The system then performs signal acquisition and a target 

identification algorithm to identify the target the user has 

focused on. (4) The results of the target identification 
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Fig. 1. (a) Principle of target identification of visual evoked potential (VEP)-
based BCI system. (b) Implementation example as the headband-type device 
with system-on-a-chip (SoC) for signal processing 
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algorithm are transmitted wirelessly to the display. (5) After 

a single typing, the user moves his or her gaze to the next 

visual target to continue typing. 

The key performance indicators of the V-BCI system are 

target identification accuracy and information transfer rate 

(ITR). As shown in the ITR equation in Fig. 2, the ITR is 

determined by the number of all visual target stimuli Nf, the 

accuracy P, and the target selection time T. The ITR can be 

improved by increasing P while decreasing Nf and T. The 

practicality of the wearable V-BCI system can be improved 

by increasing the number of target frequencies Nf since it 

represents the number of intents that can be expressed. 

However, the higher the Nf, the higher performance of the 

target identification algorithm is required as smaller visual 

stimuli are placed in the limited display area and should be 

identified with small frequency intervals. 

The target selection time, T, is composed of a gaze shift 

time Tgaze (usually 0.5 sec) to move the focus of sight, the 

SSVEP recording time TR, and the signal processing time 

Tproc required to complete the signal processing after the end 

of the recording. Reducing the T is also an effective way to 

improve the ITR. However, in general, the longer the TR, the 

higher the P from a large amount of target information in the 

SSVEP. In addition, a high-performance target identification 

algorithm with high accuracy can take a long Tproc, which 

works opposite to reducing T. Therefore, the TR and target 

identification algorithm should be carefully determined. 

The accuracy can be improved by increasing the TR or the 

number of channels as indicated in Fig. 2. However, the 

amount of computation increases exponentially by using the 

higher number of SSVEP channels. The dramatic increase of 

computational complexity can be shown when the system 

uses multiple channels rather than a single channel. 

Therefore, if high accuracy is not required in a V-BCI 

system, it can be an appropriate design strategy to consider 

optimizing single channel SSVEP-based algorithm with low 

power consumption in the low-cost embedded system. Due 

to the limitations of single-channel SSVEP in terms of the 

amount of target information, V-BCI can be implemented 

with a multi-channel-based target identification algorithm to 

meet the high accuracy requirements. Accordingly, it will be 

inefficient and difficult to perform a multi-channel-based 

algorithm with software in a wearable device. In this case, it 

is important to perform the algorithm by signal processing 

hardware which can accelerate the frequently used linear 

algebra operations with high energy efficiency. 

This paper introduces a wearable V-BCI system that 

performs target identification based on linear algebra and 

discusses issues that need to be specifically considered in the 

design of an algorithm and a linear algebra processor. For the 

target identification algorithm, two topics are covered: an 

optimization technique that can be considered in a single-

channel SSVEP-based software implementation to reduce 

memory footprint and computational complexity, and a 

target candidate reduction technique that can be considered 

in multi-channel SSVEP-based implementation to reduce the 

computational load. For hardware design, we discuss the 

architecture and performance of a processing element (PE) 

array that can effectively perform various linear algebra 

operations. 

 

 

 

 

 

Fig. 2. Performance indicators of target identification algorithm.  
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Fig. 3. Algorithm optimization for single-channel target identification on 
low-cost MCU-based V-BCI system. This optimization method not only 
reduced the memory footprint of the target identification program by 92% 
but also significantly reduced the computational complexity. 
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II. DESIGN METHODOLOGY OF WEARABLE BCI SYSTEM 

A. Algorithm 

Fig. 3 shows the concept of signal binarization reported in 

the previous study [12] for the target identification step in 

the procedure of wearable V-BCI system operation. The 

signal binarization to the SSVEP maps the amplitude of the 

SSVEP signal to +1 or -1. Positive amplitude samples map 

to +1 and negative/zero amplitude samples map to -1. In 

general, the target identification algorithms consist of linear 

algebra operations are performed in software that uses 

floating-point arithmetic. If a sample can be stored in 4-byte 

float variable, 8 samples take up 32-bytes of memory on an 

MCU-based system. However, if the amplitude is mapped to 

a single digit binary value, 8 samples will occupy only 1-

byte and can be processed with fixed-point arithmetic. 

Signal binarization reduces data memory and code size of 

MCU-based system for single-channel SSVEP as shown in 

Fig. 3. 

Fig. 4(a) represents baseline algorithm, CCA-Comb, a 

combinatorial method for CCA-Standard (standard version 

of canonical correlation analysis) and individual template-

based CCA (IT-CCA) [8], [13], which detects temporal 

features of SSVEP signals using CCA-Standard between 

SSVEP and individual SSVEP template that can be obtained 

by averaging multiple training trials. The CCA-Comb uses 

the four weight vectors as spatial filters to enhance the SNR 

of SSVEPs. The CCA-Comb for multi-channel SSVEP 

typically compares SSVEP to all target frequencies as shown 

in Fig. 4(a). It can increase computational complexity in 

proportion to the number of visual targets. In previous work 

[14], the candidate reduction (CR) technique was proposed 

to reduce the target candidates with simple preprocessing as 

described in Fig. 4(b). If the total number of targets Nf is 12 

and the predetermined number of candidates is 3, the CR 

technique, a simple correlation analysis between the input 

SSVEP and the subject-specific SSVEP template data, 

reduces the number of target candidates from 12 to 3 before 

processing the target identification algorithm. If the top-3 

targets of the correlation coefficient are selected, the target 

identification algorithm is performed for only those 3 

candidates with a negligible decrease of average target 

identification accuracy. In this case, except for the addition 

of the initial correlation calculation, the computational 

complexity can be reduced by about 75%. 

Fig. 5 shows the result of analyzing the dataset used in 

[15] with the CCA-CR algorithm proposed in [14]. Fig. 5(a) 

represents the probability that the focused target stimuli are 

included in the group of reduced candidates for each TR 

according to the predetermined number of candidates. The 

accuracy tends to be the same depending on the length of the 

TR, however, the performance is particularly poor for the 

0.5s-long TR. Considering that as the number of candidates 

decreases, the amount of computation is drastically reduced, 

it is effective for system performance to select 3 candidates 

for 1s TR, which is close to 90% accuracy. Fig. 5(b) shows 

the results of Fig. 5(a) according to the number of candidates 

for each subject. In the case of subjects 2, 5, 9, and 10, when 

the number of candidates falls below 3, the performance 

decreases significantly. 

 

Fig. 4. (a) The conventional target identification algorithm analyzes the 
correlation for all existing visual stimuli and selects the most correlated 
target among them. (b) Candidate reduction (CR) reduces the number of 
target candidates using simple correlation analysis. 
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Fig. 5. (a) Accuracy of CCA-CR according to the number of candidates. (b) 
Subject-wise accuracy of CCA-CR using 1-s SSVEP according to the 
number of candidates. 
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B. Hardware Architecture 

Linear algebra operations used in the target identification 

algorithm of V-BCI typically require BLAS (basic linear 

algebra Subprograms) Level 1-3 and matrix factorization. In 

general, the hardware architecture for simple matrix 

multiplication is a PE (processing element) array of MAC 

units, which is also called a systolic array. The systolic array 

is suitable not only for simple MAC operations but also for 

complex operations such as matrix factorization from point 

of view of data flow since the data flow can be appropriately 

expressed at the hardware architecture level for matrix 

factorization. In addition, the systolic array can reduce the 

memory bandwidth and access, which helps to improve 

energy efficiency.  

Target identification accuracy and ITR are closely related 

to the hardware architecture in the multi-channel SSVEP 

based system implementation. Fig. 6(a) shows the typical 

difference between the single array architecture and the 3-

engine architecture proposed in a previous study [14] in 

which two PE arrays are contained in one engine. Multiple 

array architecture can quickly complete the target 

identification algorithm through parallel processing. The 

single array architecture requires relatively small hardware 

complexity and power consumption, while there is a long 

delay to algorithm completion due to sequential processing. 

In the ITR equation of Fig. 6(b), target selection time T is 

composed of Tgaze, TR, and Tproc as mentioned earlier. If the 

TR can be significantly reduced with a high performance 

SSVEP acquisition equipment or target identification 

algorithm, then reduction of TR improves ITR by increasing 

the ratio of Tproc to T. In this case, it is better to exploit 

parallel processing from multiple array architecture to 

improve ITR. However, if the TR is longer than 1sec or more, 

reducing Tproc does not significantly affect ITR 

improvement, then using a multiple array architecture to 

reduce Tproc is inefficient in terms of hardware area and 

 

 

Fig. 6. (a) Comparison of parallel processing and sequential processing by 
multiple array architecture and single array architecture, respectively. (b) 
ITR analysis for the time component constituting the target selection time, 
T, which is an important factor in calculating the ITR. (c) ITR analysis over 
processing time, Tproc, for various target identification accuracy. 
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Fig. 7. Implementation procedure and methodology. In the hardware design 
step, algorithm profiling, chip specification, and functional modeling into 
python and C simulator are particularly important for numerical processing 
in terms of quantization error of fixed-point arithmetic. 
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power consumption. Therefore, it is suitable to implement a 

wearable V-BCI device to lower the chip implementation 

cost and improve energy efficiency by sequentially 

processing through a single array architecture.  

Fig. 6(c) shows the ITR according to the change of Tproc 

when Tgaze and TR are set to 0.5sec and 1.0sec, respectively. 

If the Tproc is in the order of tens of ms, even if the Tproc 

becomes 6 times longer, the change in ITR is not significant. 

Designing a linear algebra acceleration processor requires 

careful consideration of a reconfigurable PE array and an 

ISA (instruction set architecture) representing various linear 

algebra operations. In addition, efficient microarchitecture 

for repetitive operations should be considered. Various 

matrix factorization made up of an iterative procedure 

typically involves plane rotation. The accurate results of the 

matrix factorization can be obtained through iterative plane 

rotation to get closer to convergence. Designing these 

operations as a hardware architecture requires consideration 

of minimizing memory access for energy efficiency by 

moving data between PEs in the array.  

Fig. 7 shows the overall design process and methodology 

for a linear algebra processor. The front-end and back-end of 

the chip implementation follow the general procedure for 

implementing a digital system. The algorithm profiling, chip 

specification, and functional simulator step in the hardware 

design process are very important in numerical processing 

applications dealing with linear algebra. In general, serious 

malfunction can occur when the quantization errors 

generated by converting the floating-point arithmetic into 

fixed-point arithmetic are accumulated. Therefore, the 

process of converting the floating-point algorithm to the 

fixed-point algorithm and the hardware Q-format design 

should consider the accumulation of errors due to repetitive 

linear algebra operations. 

 

 
III. RESULTS AND DISCUSSIONS 

 

The linear algebra processor with design methodology 

introduced in the previous sections was fabricated in a 

130nm CMOS process as indicated in Table I. This chip is 

implemented to operate at a core voltage 1.0V at 90MHz 

operating frequency and has a single array to reduce power 

consumption since energy efficiency is an important 

indicator in this work. Linear algebra processors can be 

designed to support different types of operations according 

to the requirements of the application system. It is important 

to define the supported operations and ISA to be specialized 

in the target domain. In addition, in order to efficiently 

perform reconfiguration that changes the behavior of 

hardware in runtime, there are important issues such as 

managing input/output memory address, size, and matrix 

shape, and Q-format settings. 

It is always recommended that the ITR of target 

identification is high, except when the accuracy and energy 

efficiency are too low. For example, if the number of visual 

targets is very high and the target selection time is very short, 

ITR may look high even if the accuracy is low. In this case, 

it is difficult to use the system. In addition to ITR, energy 

efficiency should be considered when referring to the 

physical aspects of chip performance. Reducing target 

selection time requires an approach that improves the 

operating frequency and reduces signal processing latency, 

which harms energy efficiency. In terms of overall system 

performance, then increasing the operating frequency is not 

always an appropriate approach, and it is important to 

achieve a balance between operating frequency and energy 

efficiency. If the designer needs to reduce target selection 

time as much as possible, even if the energy consumption is 

large, it would be better to adopt a multiple array architecture 

and improve the operating frequency. However, if energy 

efficiency is the most important metric, reducing power 

consumption by making signal processing latencies longer 

by using a single array and lower operating frequency can 

help ensure proper ITR and energy efficiency performance. 

 

 
IV. CONCLUSION 

 

This paper introduced design considerations in terms of 

algorithms and hardware architecture issues that can be 

considered when designing a linear algebra processor for a 

wearable V-BCI system. The number of SSVEP channels 

and the corresponding algorithm implementation method 

should be determined according to the system requirements 

of the wearable V-BCI. In the case of processing single 

channel SSVEP, the target identification algorithm can be 

optimized and implemented in software and processed in the 

low-cost MCU environment. In the case of processing multi-

channel SSVEP, hardware acceleration is required to handle 

a large amount of computation. The candidate reduction 

technique was also introduced that significantly reduces the 

amount of computation with little reduction of accuracy. The 

hardware architecture should be determined considering the 

time required for signal processing and input recording, 

which constitutes the target selection time of the V-BCI 

system. Unless the recording time is short and the signal 

processing time needs to be reduced, a single array 

architecture is suitable. In addition, the PE array architecture 

should be designed by reflecting the repetitive 

characteristics of linear algebra operations. 
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