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Abstract — In this paper, we introduced design considerations
of a wearable brain-computer interface (BCI) that performs a
target identification algorithm based on linear algebra. Steady-
state visual evoked potential (SSVEP) based wearable BCI have
been studied to enable paralyzed patients to communicate with
others. However, performance indicators such as target
identification accuracy and the information transfer rate (ITR)
still need to be further improved for wearable devices. This
paper discusses several considerations for designing algorithms
and linear algebra accelerating hardware. In the case of target
identification algorithms, a signal binarization technique and
candidate reduction technique which are proposed in the
previous works can be considered in single-channel SSVEP-
based software implementations and multi-channel SSVEP
processing in hardware to reduce computational complexity,
respectively. For hardware architecture design, we introduced
architectural considerations of processing element array that
can effectively perform various linear algebra operations.

Keywords—Brain-Computer Interface (BCI), Linear algebra
processor, System-on-a-chip, Target identification

1. INTRODUCTION

Brain-computer interface (BCI) can convert electrical
signals of brain activity into interpretable information that
reflects the user's intent [1]-[3]. Because BCI technology
only requires electrical signals, it can provide a new control
channel for people with neuromuscular disorders [1], [3].
For paralyzed patients, the BCI speller allows the use of
word processing programs for communication with others.

BCI techniques can be classified as either invasive or non-
invasive depending on whether the surgery is performed or
not. In non-invasive BCI, the electroencephalogram (EEG)
based BCI speller has been widely used in paralyzed patients
due to its high time resolution, low cost, safety, and wide
range of applications [4]-[6]. Because spelling systems for
paralyzed patients require fast and intuitive communication,
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Fig. 1. (a) Principle of target identification of visual evoked potential (VEP)-
based BCI system. (b) Implementation example as the headband-type device
with system-on-a-chip (SoC) for signal processing

the steady-state visual evoked potential (SSVEP) has been
widely used [5], [7], [8].

Recent works on high-speed visual stimuli-based BCI (V-
BCI) systems mainly used electrode array caps with EEG
recording devices and external signal processing machines.
This type of BCI spelling system is inconvenient, takes a
long time to set up, and relies on external computing systems
[9]. Such systems have a high information transfer rate (ITR),
but their high cost and large form factor limit their
practicality in real-world situations.

In previous study, an in-ear V-BCI was reported in [10].
However, the wearable in-ear device of this system only
acquires the SSVEP signal and transmits raw SSVEP data
wirelessly with high power consumption [11]. Therefore,
there is a requirement for an energy-efficient wearable V-
BCI that performs signal processing algorithms on the chip.

The operation of the wearable V-BCI with its example is
illustrated in Fig. 1(a). (1) When the user gazes at a blinking
character on the display, the frequency information of the
blinking character is reflected in the brain signal (SSVEP).
(2) SSVEP can be measured in the occipital area of the scalp.
(3) The system then performs signal acquisition and a target
identification algorithm to identify the target the user has
focused on. (4) The results of the target identification
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Fig. 2. Performance indicators of target identification algorithm.

algorithm are transmitted wirelessly to the display. (5) After
a single typing, the user moves his or her gaze to the next
visual target to continue typing.

The key performance indicators of the V-BCI system are
target identification accuracy and information transfer rate
(ITR). As shown in the ITR equation in Fig. 2, the ITR is
determined by the number of all visual target stimuli NV, the
accuracy P, and the target selection time 7. The ITR can be
improved by increasing P while decreasing Ny and 7. The
practicality of the wearable V-BCI system can be improved
by increasing the number of target frequencies Ny since it
represents the number of intents that can be expressed.
However, the higher the N, the higher performance of the
target identification algorithm is required as smaller visual
stimuli are placed in the limited display area and should be
identified with small frequency intervals.

The target selection time, 7, is composed of a gaze shift
time Tgaze (usually 0.5 sec) to move the focus of sight, the
SSVEP recording time 7%, and the signal processing time
Tyroc required to complete the signal processing after the end
of the recording. Reducing the T is also an effective way to
improve the ITR. However, in general, the longer the 7%, the
higher the P from a large amount of target information in the
SSVEP. In addition, a high-performance target identification
algorithm with high accuracy can take a long 7)., which
works opposite to reducing 7. Therefore, the 7x and target
identification algorithm should be carefully determined.

The accuracy can be improved by increasing the T or the
number of channels as indicated in Fig. 2. However, the
amount of computation increases exponentially by using the
higher number of SSVEP channels. The dramatic increase of
computational complexity can be shown when the system
uses multiple channels rather than a single channel.

Therefore, if high accuracy is not required in a V-BCI
system, it can be an appropriate design strategy to consider
optimizing single channel SSVEP-based algorithm with low
power consumption in the low-cost embedded system. Due
to the limitations of single-channel SSVEP in terms of the
amount of target information, V-BCI can be implemented
with a multi-channel-based target identification algorithm to
meet the high accuracy requirements. Accordingly, it will be
inefficient and difficult to perform a multi-channel-based
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Fig. 3. Algorithm optimization for single-channel target identification on
low-cost MCU-based V-BCI system. This optimization method not only
reduced the memory footprint of the target identification program by 92%
but also significantly reduced the computational complexity.

algorithm with software in a wearable device. In this case, it
is important to perform the algorithm by signal processing
hardware which can accelerate the frequently used linear
algebra operations with high energy efficiency.

This paper introduces a wearable V-BCI system that
performs target identification based on linear algebra and
discusses issues that need to be specifically considered in the
design of an algorithm and a linear algebra processor. For the
target identification algorithm, two topics are covered: an
optimization technique that can be considered in a single-
channel SSVEP-based software implementation to reduce
memory footprint and computational complexity, and a
target candidate reduction technique that can be considered
in multi-channel SSVEP-based implementation to reduce the
computational load. For hardware design, we discuss the
architecture and performance of a processing element (PE)
array that can effectively perform various linear algebra
operations.
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1. DESIGN METHODOLOGY OF WEARABLE BCI SYSTEM

A. Algorithm

Fig. 3 shows the concept of signal binarization reported in
the previous study [12] for the target identification step in
the procedure of wearable V-BCI system operation. The
signal binarization to the SSVEP maps the amplitude of the
SSVEP signal to +1 or -1. Positive amplitude samples map
to +1 and negative/zero amplitude samples map to -1. In
general, the target identification algorithms consist of linear
algebra operations are performed in software that uses
floating-point arithmetic. If a sample can be stored in 4-byte
float variable, 8 samples take up 32-bytes of memory on an
MCU-based system. However, if the amplitude is mapped to
a single digit binary value, 8 samples will occupy only 1-
byte and can be processed with fixed-point arithmetic.
Signal binarization reduces data memory and code size of
MCU-based system for single-channel SSVEP as shown in
Fig. 3.

Fig. 4(a) represents baseline algorithm, CCA-Comb, a
combinatorial method for CCA-Standard (standard version
of canonical correlation analysis) and individual template-
based CCA (IT-CCA) [8], [13], which detects temporal
features of SSVEP signals using CCA-Standard between
SSVEP and individual SSVEP template that can be obtained
by averaging multiple training trials. The CCA-Comb uses
the four weight vectors as spatial filters to enhance the SNR
of SSVEPs. The CCA-Comb for multi-channel SSVEP
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typically compares SSVEP to all target frequencies as shown
in Fig. 4(a). It can increase computational complexity in
proportion to the number of visual targets. In previous work
[14], the candidate reduction (CR) technique was proposed
to reduce the target candidates with simple preprocessing as
described in Fig. 4(b). If the total number of targets Nyis 12
and the predetermined number of candidates is 3, the CR
technique, a simple correlation analysis between the input
SSVEP and the subject-specific SSVEP template data,
reduces the number of target candidates from 12 to 3 before
processing the target identification algorithm. If the top-3
targets of the correlation coefficient are selected, the target
identification algorithm is performed for only those 3
candidates with a negligible decrease of average target
identification accuracy. In this case, except for the addition
of the initial correlation calculation, the computational
complexity can be reduced by about 75%.

Fig. 5 shows the result of analyzing the dataset used in
[15] with the CCA-CR algorithm proposed in [14]. Fig. 5(a)
represents the probability that the focused target stimuli are
included in the group of reduced candidates for each Tk
according to the predetermined number of candidates. The
accuracy tends to be the same depending on the length of the
T, however, the performance is particularly poor for the
0.5s-long Tx. Considering that as the number of candidates
decreases, the amount of computation is drastically reduced,
it is effective for system performance to select 3 candidates
for 1s Tk, which is close to 90% accuracy. Fig. 5(b) shows
the results of Fig. 5(a) according to the number of candidates
for each subject. In the case of subjects 2, 5,9, and 10, when
the number of candidates falls below 3, the performance
decreases significantly.
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Fig. 5. (a) Accuracy of CCA-CR according to the number of candidates. (b)
Subject-wise accuracy of CCA-CR using 1-s SSVEP according to the
number of candidates.
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B. Hardware Architecture

Linear algebra operations used in the target identification
algorithm of V-BCI typically require BLAS (basic linear
algebra Subprograms) Level 1-3 and matrix factorization. In
general, the hardware architecture for simple matrix
multiplication is a PE (processing element) array of MAC
units, which is also called a systolic array. The systolic array
is suitable not only for simple MAC operations but also for
complex operations such as matrix factorization from point
of view of data flow since the data flow can be appropriately
expressed at the hardware architecture level for matrix
factorization. In addition, the systolic array can reduce the
memory bandwidth and access, which helps to improve
energy efficiency.
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Target identification accuracy and ITR are closely related
to the hardware architecture in the multi-channel SSVEP
based system implementation. Fig. 6(a) shows the typical
difference between the single array architecture and the 3-
engine architecture proposed in a previous study [14] in
which two PE arrays are contained in one engine. Multiple
array architecture can quickly complete the target
identification algorithm through parallel processing. The
single array architecture requires relatively small hardware
complexity and power consumption, while there is a long
delay to algorithm completion due to sequential processing.

In the ITR equation of Fig. 6(b), target selection time 7 is
composed of Tyuze, Tr, and Tprc as mentioned earlier. If the
Tk can be significantly reduced with a high performance
SSVEP acquisition equipment or target identification
algorithm, then reduction of 7r improves ITR by increasing
the ratio of T, to 7. In this case, it is better to exploit
parallel processing from multiple array architecture to
improve ITR. However, if the 7% is longer than 1sec or more,
reducing does not significantly affect ITR
improvement, then using a multiple array architecture to
reduce Tpw is inefficient in terms of hardware area and

Tproc

r \
Algorithm . e e Functional Modeling
c ProfilingH Chip Specification (Python, €)
.20
(7]
a
o RTL Description Functional Verification
§ (Verilog HDL) (Simulator)
o©
£
©
T Xcelium Functional Verification
(HDL Simulation) Compare
\ b,
<
Design
Compiler
o v v
:'-"_, Formal Verification Static Timing Analysis
g (RTL vs. Gate Level) (STA)
S
w
Formality l i Prime Time
. Pre-Layout
Xcelium Simulation
b,
” <
IC-Compiler Placement & Routing 3 r.°w‘:_r
stimation
Prime Time
PX
Calibre DRC, LVS
-]
&
X v v
© P A
@ ( Formal Verification ) (Statlc T'E‘::)Analyﬂs)
Formality ‘ ‘ Prime Time
Xcelium Post-Layout Tape-Out
Simulation
L J

Fig. 7. Implementation procedure and methodology. In the hardware design
step, algorithm profiling, chip specification, and functional modeling into
python and C simulator are particularly important for numerical processing
in terms of quantization error of fixed-point arithmetic.
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TABLE I. CHIP INFORMATION

Technology 130nm CMOS
Array Architecture 8x8 PE-based single array architecture
Core Voltage 10V
Clock Frequency 90 MHz

122.8mW for CCA-CR processing

ABIEZD RO (PE array consumes 92% of total power)

Application Linear Algebra Processing for V-BCI

power consumption. Therefore, it is suitable to implement a
wearable V-BCI device to lower the chip implementation
cost and improve energy efficiency by sequentially
processing through a single array architecture.

Fig. 6(c) shows the ITR according to the change of T,
when Tg... and Ty are set to 0.5sec and 1.0sec, respectively.
If the T, is in the order of tens of ms, even if the Ty
becomes 6 times longer, the change in ITR is not significant.

Designing a linear algebra acceleration processor requires
careful consideration of a reconfigurable PE array and an
ISA (instruction set architecture) representing various linear
algebra operations. In addition, efficient microarchitecture
for repetitive operations should be considered. Various
matrix factorization made up of an iterative procedure
typically involves plane rotation. The accurate results of the
matrix factorization can be obtained through iterative plane
rotation to get closer to convergence. Designing these
operations as a hardware architecture requires consideration
of minimizing memory access for energy efficiency by
moving data between PEs in the array.

Fig. 7 shows the overall design process and methodology
for a linear algebra processor. The front-end and back-end of
the chip implementation follow the general procedure for
implementing a digital system. The algorithm profiling, chip
specification, and functional simulator step in the hardware
design process are very important in numerical processing
applications dealing with linear algebra. In general, serious
malfunction can occur when the quantization errors
generated by converting the floating-point arithmetic into
fixed-point arithmetic are accumulated. Therefore, the
process of converting the floating-point algorithm to the
fixed-point algorithm and the hardware Q-format design
should consider the accumulation of errors due to repetitive
linear algebra operations.

I1l. RESULTS AND DISCUSSIONS

The linear algebra processor with design methodology
introduced in the previous sections was fabricated in a
130nm CMOS process as indicated in Table I. This chip is
implemented to operate at a core voltage 1.0V at 90MHz
operating frequency and has a single array to reduce power
consumption since energy efficiency is an important
indicator in this work. Linear algebra processors can be
designed to support different types of operations according
to the requirements of the application system. It is important
to define the supported operations and ISA to be specialized
in the target domain. In addition, in order to efficiently

16

http://www.idec.or.kr

perform reconfiguration that changes the behavior of
hardware in runtime, there are important issues such as
managing input/output memory address, size, and matrix
shape, and Q-format settings.

It is always recommended that the ITR of target
identification is high, except when the accuracy and energy
efficiency are too low. For example, if the number of visual
targets is very high and the target selection time is very short,
ITR may look high even if the accuracy is low. In this case,
it is difficult to use the system. In addition to ITR, energy
efficiency should be considered when referring to the
physical aspects of chip performance. Reducing target
selection time requires an approach that improves the
operating frequency and reduces signal processing latency,
which harms energy efficiency. In terms of overall system
performance, then increasing the operating frequency is not
always an appropriate approach, and it is important to
achieve a balance between operating frequency and energy
efficiency. If the designer needs to reduce target selection
time as much as possible, even if the energy consumption is
large, it would be better to adopt a multiple array architecture
and improve the operating frequency. However, if energy
efficiency is the most important metric, reducing power
consumption by making signal processing latencies longer
by using a single array and lower operating frequency can
help ensure proper ITR and energy efficiency performance.

1V. CONCLUSION

This paper introduced design considerations in terms of
algorithms and hardware architecture issues that can be
considered when designing a linear algebra processor for a
wearable V-BCI system. The number of SSVEP channels
and the corresponding algorithm implementation method
should be determined according to the system requirements
of the wearable V-BCI. In the case of processing single
channel SSVEP, the target identification algorithm can be
optimized and implemented in software and processed in the
low-cost MCU environment. In the case of processing multi-
channel SSVEP, hardware acceleration is required to handle
a large amount of computation. The candidate reduction
technique was also introduced that significantly reduces the
amount of computation with little reduction of accuracy. The
hardware architecture should be determined considering the
time required for signal processing and input recording,
which constitutes the target selection time of the V-BCI
system. Unless the recording time is short and the signal
processing time needs to be reduced, a single array
architecture is suitable. In addition, the PE array architecture
should be designed by reflecting the repetitive
characteristics of linear algebra operations.
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