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Abstract— Matrix-vector multiplication (MVM) is a core
operation in large language models (LLMs), and compute-in-
memory (CIM) technologies offer a promising path to
overcome data movement bottlenecks. Among them, capacitive
coupling principle-based CIM (CCP-CIM) enables low-power
operation by eliminating static current paths. In this work, we
propose an energy-efficient neuron circuit optimized for CCP-
CIM. The design features a cascaded input stage for enhanced
transconductance linearity, as well as feedback-assisted control
and overflow/underflow detection to reduce unnecessary digital
conversions. Furthermore, the discharge rate is dynamically
adjustable through analog biasing, enabling flexible control of
the neuron’s response range. Implemented in TSMC 28 nm
CMOS, the proposed design achieves up to 2.15% less energy
consumption than a conventional neuron circuit. This work
supports scalable and adaptive analog inference for edge Al
applications.
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1. INTRODUCTION

Large language model (LLM)-based generative artificial
intelligence (Al) applications have sparked intense interest
in the underlying computing infrastructure. Most modern
LLMs employ multi-head attention (MHA) blocks [1] to
construct their encoder and decoder layers. Recent
advancements further incorporate model distillation [2] and
retrieval-augmented generation (RAG) [3] techniques to
achieve state-of-the-art performance.

At their core, LLM computations are predominantly
composed of multiply-and-accumulate (MAC) operations.

While analog compute-in-memory (CIM) technologies [4-9]
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have garnered increasing attention as a promising approach
for accelerating such operations, general-purpose GPU
(GPGPU)-based digital computing platforms remain the
industry standard. This persistence stems from the intrinsic
advantages of digital design: process-agnostic reusability,
established design flows, and inherently precise computation.

However, digital-centric computing is not without its
limitations. In conventional digital systems, arithmetic logic
units (ALUs) and memory modules are physically separated
and connected via bandwidth-limited buses. Consequently,
both computation speed and energy efficiency are
bottlenecked by data movement constraints.

CIM architectures address this challenge by leveraging
the intrinsic parallelism of memory arrays to accelerate
matrix-vector multiplication (MVM). In CIM systems,
matrix elements are mapped to memory states, while input
vectors are applied to input terminals. A single memory

access yields an analog signal—either current or voltage—

that directly represents the result of the MVM operation.
CIM can be broadly categorized into two types based on

their physical operating principles: Kirchhoff’s current law
(KCL)-based CIM [4-6] and capacitive coupling principle

(CCP)-based CIM [7-9]. As summarized in Table 1, these

two approaches differ in how they represent matrix and
vector quantities. KCL-CIM represents matrix elements as
conductances, input vectors as voltages, and produces
current-mode outputs. In contrast, CCP-CIM represents
matrix elements using capacitance, applies differential input
voltages, and generates voltage-mode outputs.

CCP-CIM is inherently more energy-efficient than KCL-
CIM, as it avoids continuous current flow paths and thus
minimizes static power consumption. Capacitive coupling is
also better suited for low-leakage and low-power circuit
designs, making it an ideal candidate for energy-constrained
Al accelerators. Furthermore, CCP-CIM produces MVM
outputs as analog voltages within a fixed voltage headroom,
which simplifies circuit design under low-voltage conditions
and mitigates dynamic range management issues.

Conventional CCP-CIM implementations typically rely

on analog-to-digital converters (ADCs)—such as successive
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TABLE I. Comparisons of KCL and CCP Type

Type KCL CCp
Matrix .
Conductance Capacitance
element
Input .
P Voltage level Voltage difference
vector
Output
P Current level Voltage level
vector
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Figure 1. Neuron circuit architecture.

approximation register (SAR) ADCs [7] or Flash ADCs
[8]—to digitize the analog output. Although these ADCs

provide high precision, they often introduce considerable
static power consumption, which undermines the low-power
advantage of CCP-CIM architectures.

To overcome this challenge, we propose a low-power 4-
bit neuron circuit operating in the temporal domain. The
proposed neuron digitizes analog voltage outputs using a
temporal-to-digital converter (TDC), and additionally
enables control of output signal timing via analog biasing.
This design allows for adjustment of the signal window of
interest. Our prior work [9] demonstrated the feasibility of
energy-efficient, temporally encoded neuron circuits for
CCP-CIM. Building on that foundation, we further enhance
energy efficiency by integrating overflow and underflow
detection mechanisms.

1. DESIGN METHODOLOGY

Figure 1 shows the configuration of the proposed neuron
circuit. A single neuron circuit consists of a neuron core and
TDC. Detailed explanations of each block are provided in
the following subsections. The design was implemented
using the TSMC 28 nm logic CMOS process.

A. Neuron circuit design

Figure 2 presents a schematic comparison between the
previous and proposed neuron core designs. The control
signals include RSTB, EN, RESET, and INIT, while VIN,
VPREC, and VB are analog input signals. In particular, the
VIN signal is directly connected to the memory array, where
the CCP-based analog MVM operation takes place. As a

result, the analog MVM output—represented as a voltage

level—is fed into the neuron core via VIN. During inference,

the VIN voltage swings both positively and negatively
around the precharged level. The detailed inference scheme
utilizing the memory array has been described in our
previous work [9].

Figure 3 shows the timing diagram of the neuron circuit.
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Figure 2. Comparison of neuron core schematics: (a) prior design and
(b) proposed design.
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Figure 3. Neuron operation timing diagram.

The operation of the neuron circuit consists of three phases:
Phase-I, Phase-II, and Phase-III. In the Phase-I, the circuit is
reset by either the RSTB or INIT signal, which charges the
INTERNAL NODE to Vpp. In the Phase-II, the EN signal
is asserted (set high), enabling the neuron circuit to integrate
the VIN input. In the Phase-III, the EN signal is deasserted
(set low), and the RESET signal is asserted (set high),
causing the INTERNAL NODE to discharge toward Vss
through a transistor controlled by the RESET signal. When
the voltage of the INTERNAL NODE drops below the
threshold voltage of the amplifier, the amplifier is triggered
and the neuron output (NEURON_OUT) is generated. This
output is subsequently passed to the temporal-to-digital
converter (TDC) stage.

The discharge rate during Phase-II is tuned by the
reference voltage VPREC, while its dynamic range is
bounded by VPREC+AVIN, which depends on the MAC
output  vector values. This ensures that the
INTERNAL NODE voltage spans a sufficient range before
Phase-III, allowing the TDC to reliably quantize the result
within the 10 ns cycle budget at 100 MHz operation.

The previous neuron design, shown in Figure 2(a), was
fabricated using the TSMC 180 nm CMOS logic process.
The input stage consisted of a single transistor. Since the
transistors controlled by the EN and RESET signals act as
electrical switches, their effect on the signal path could be
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neglected. In this earlier design, the short-channel effect
(SCE) was mitigated by employing transistors with
sufficient channel length.

() ...

VDD

VsL —’S'

Transconductance (uA/V) Current (pA)

(b). " .
L wno " Typical
5 Vsl_‘ '/‘
= w00 7
5 /;
£ 2o /
= VPREC /
O (snomvl_' /
s wjl——=
e
3 TN Immax @ 500 mV
' ey
g H
£ H
£ i
S H
2 H
2 H
H
s H
3 H
- E
£ i
g & oo

VIN (mV)
Figure 4. Current and transconductance characteristics of the input
stage for (a) the prior neuron circuit and (b) the proposed neuron
circuit

The proposed design introduces architectural
enhancements over the previous version: improvement of
input stage transconductance linearity, adjustable discharge
rate in Phase-III a feedback input path, and an overflow
detection mechanism. Figure 2(b) illustrates the proposed
neuron circuit designed in the TSMC 28 nm CMOS logic
process. In advanced technology nodes, SCE becomes more
pronounced compared to older nodes. To address this issue,
the input stage and reset path have been modified to include
two cascaded transistors.

This modification not only suppresses SCE but also

improves the linearity of the input stage's (gm). Figure 4

compares the simulated transfer characteristics and
transconductance of (a) the previous design and (b) the
proposed design. The previous design exhibits a
monotonically increasing gm, which impairs accurate
mapping between input voltage and output current, thereby
degrading the linearity of the neuron core.

In contrast, the proposed design achieves a peak gm near a
designated bias voltage of VPREC and then decreases. This
behavior is well aligned with the inference operation. By
setting VPREC equal to the precharge voltage of the memory
array, a plateau region in gn is utilized, ensuring minimal
variation across the input voltage range relevant to analog
MAC outputs.

In addition, the proposed design incorporates a cascaded
transistor configuration in the reset path, which allows the
discharge rate of the INTERNAL NODE to be modulated
via the VB bias voltage. This capability introduces a
dynamic control mechanism over the neuron's operating
range. By adjusting the discharge rate, the neuron can
effectively shift the point of interest within the analog MVM
output range.
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Figure 5. (a) Input signal generate logics for the proposed neuron
core. (b) Timing diagram of the edge detectors (posedge/negedge).

Specifically, when the integrated result of the MVM
operation is too small to trigger the amplifier within the
standard discharge profile, increasing the VB bias
accelerates the discharge, allowing even smaller MVM
outputs to reach the amplifier's threshold and produce a valid
output. Conversely, lowering the VB bias slows down the
discharge, making the neuron more selective and responsive
only to larger MVM results. This tunability enables dynamic
range operation, allowing the neuron circuit to adaptively

focus on specific regions of the input distribution—either

amplifying low-range signals or filtering out smaller
contributions to prioritize higher analog weights.

Another key improvement is the addition of a feedback
control path and an overflow detection mechanism, which
interfaces with the subsequent TDC stage. In the prior
design, overflow detection was absent, leading to
unnecessary activations of the TDC and considerable energy
dissipation. To address this, the proposed design generates
an overflow signal that both triggers TDC response and
generates feedback to the neuron core.

Figure 5 illustrates the control signal generation circuit for
the proposed neuron core, including the overflow-induced
feedback logic. Upon detection of overflow, the TDC clamps
its output and a feedback signal pulls down the
INTERNAL NODE of the neuron core for a short duration
(< 1 ns). This prevents the inverter-based comparator from
remaining in its high-current region, thereby significantly
improving energy efficiency. This technique is also applied
to the generation of the INIT signal. When the RESET signal
is turned off, a short-duration INIT pulse is generated, which
briefly pulls up the INTERNAL NODE of the neuron core.

B. Temporal-to-digital converter (TDC) design

Figure 6 (a) shows the schematic of the 4-bit TDC block
used in the proposed neuron circuit, which converts
temporally encoded signals into digital outputs and
incorporates overflow detection logic. The timing resolution,
corresponding to the least significant bit (LSB), is
approximately 700 ps, which is determined by the delay
element. This resolution is sufficient to cover the 10 ns
conversion window corresponding to a single 100 MHz
system clock cycle, and it is independent of workload
characteristics since the analog MAC accumulation is
completed during Phase-II prior to the voltage-to-time
conversion.
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Figure 6. (a) Schematic of temporal-to-digital converter for
proposed neuron circuit. (b) DNL and (c) INL measurement
results obtained from post-layout simulation.

When an overflow signal is asserted, the TDC bypasses its
normal evaluation path and forces its output to the maximum
digital wvalue, thereby preventing unnecessary digital
conversions and improving overall system energy efficiency.
The TDC design is thus tightly coupled with the neuron core
to ensure both accuracy and power-aware operation.

Figure 6 (b) and (c) shows nonlinearity (DNL) and
integral nonlinearity of TDC. Linearity was evaluated on a
post-layout simulation. Across three representative PVT

corners—Typical (TT, 25 °C, 0.9 V), Worst (SS, 125 °C, 0.81
V), and Best (FF, —55 °C, 0.99 V)—the measured DNL/INL

remained within £0.17 LSB, ensuring robust quantization.

I1l. RESULTS AND DISCUSSIONS

Figure 7 shows the simulation results of the proposed
neuron circuit. While the EN signal remains high, the VIN
signal—driven by the MVM result—varies continuously.
The neuron core integrates this input, leading to a voltage
drop at the INTERNAL NODE whose slope is proportional
to the MVM result.

Following the deassertion of the EN signal, the RESET
signal is asserted, initiating a linear discharge at the
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Figure 7. Schematic simulation results
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Figure 8. Discharge rate comparisons between prior neuron circuit and
proposed neuron circuit.

of the inverter-based comparator, the NEURON_OUT signal
is generated and then digitized by the TDC block.

For energy consumption analysis, the operation of the
neuron circuit is categorized into three distinct states:
underflow, normal, and overflow.

— In the underflow condition, the INTERNAL NODE

voltage fails to reach the trip point of the comparator before
the RESET signal is deasserted, and thus no output pulse is
generated.

— In the normal condition, the INTERNAL NODE

reaches the trip point after the EN signal is deasserted but
before the RESET signal is deasserted, resulting in valid
output.

— In the overflow condition, the INTERNAL NODE

reaches the trip point before the EN signal is deasserted,
triggering premature activation of the output.

Figure 8 compares the discharge rate linearity between the
prior neuron circuit and the proposed neuron circuit. The
slope  represents the discharge rate of the
INTERNAL NODE during Phase-II operation, while AVIN
denotes the input voltage deviation from VPREC, as shown
in Figure 7. The R? values of the prior and proposed circuits
are 0.98526 and 0.99985, respectively. This improvement
corresponds to approximately a 99% reduction in the
residual error, demonstrating that the proposed neuron

circuit achieves a near-linear analog input—output transfer
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Figure 9. Energy comparison of neuron circuits

Figure 9 compares the total energy consumption of the
prior and proposed neuron circuits for each operating
condition. For a fair comparison and to exclude process
scaling effects, both designs were implemented using the
same 28 nm technology node. In the underflow condition,
the prior design exhibits slightly better energy efficiency, as
the additional logic blocks in the proposed design introduce
overhead in this case.

However, in both the normal and overflow conditions, the
proposed neuron circuit demonstrates improved energy
efficiency. Under the overflow condition, the bypass path
effectively reduces energy consumption by avoiding
unnecessary operation of the TDC block. In the normal
condition, the pull-up technique applied to the
INTERNAL NODE also contributes to energy savings. A
detailed energy consumption across conditions is
summarized in Table II.

IV. CONCLUSION

This work presents an energy-efficient neuron circuit
tailored for CCP-CIM systems. The proposed design
integrates a plateaued transconductance (gm) input stage with
a temporal-domain output stage using a TDC, along with
overflow/underflow detection and feedback-assisted signal
control to reduce unnecessary energy consumption. By
modulating the analog bias in the reset path, the neuron
dynamically shifts its point of interest within the analog
MVM output range. This tunable sensitivity enables more
effective activation under varying inference conditions,
particularly when batched inputs cause small but non-
negligible overflow.

The proposed circuit was implemented in a TSMC 28 nm
logic CMOS process. Simulation results demonstrate
substantial energy savings, especially under overflow
conditions, enabled by TDC bypass logic and overflow
feedback to the comparator node. Although the design incurs
marginal overhead under underflow scenarios, its overall
energy efficiency and adaptability make it well suited for
low-power, edge-level analog Al inference systems.

50

http://www.idec.or.kr

TABLE Il. Summary of Energy Consumption

Average energy consumption

Operation (fJ/operation)
condition Total Neuron D

Core
Prior | Underflow | 546.7 120.5 426.2
neuron Normal 739.3 273.0 466.3
design | Overflow | 746.2 258.8 4875
Proposed | Underflow | ~ 561.7 118.2 4435
neuron Normal 694.3 206.2 488.1
design | Overflow | 346.3 227.4 118.9
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