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Abstract— Matrix-vector multiplication (MVM) is a core 

operation in large language models (LLMs), and compute-in-

memory (CIM) technologies offer a promising path to 

overcome data movement bottlenecks. Among them, capacitive 

coupling principle-based CIM (CCP-CIM) enables low-power 

operation by eliminating static current paths. In this work, we 

propose an energy-efficient neuron circuit optimized for CCP-

CIM. The design features a cascaded input stage for enhanced 

transconductance linearity, as well as feedback-assisted control 

and overflow/underflow detection to reduce unnecessary digital 

conversions. Furthermore, the discharge rate is dynamically 

adjustable through analog biasing, enabling flexible control of 

the neuron’s response range. Implemented in TSMC 28 nm 

CMOS, the proposed design achieves up to 2.15× less energy 

consumption than a conventional neuron circuit. This work 

supports scalable and adaptive analog inference for edge AI 

applications. 
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I. INTRODUCTION

Large language model (LLM)-based generative artificial 

intelligence (AI) applications have sparked intense interest 

in the underlying computing infrastructure. Most modern 

LLMs employ multi-head attention (MHA) blocks [1] to 

construct their encoder and decoder layers. Recent 

advancements further incorporate model distillation [2] and 

retrieval-augmented generation (RAG) [3] techniques to 

achieve state-of-the-art performance. 

At their core, LLM computations are predominantly 

composed of multiply-and-accumulate (MAC) operations. 

While analog compute-in-memory (CIM) technologies [4–9] 

have garnered increasing attention as a promising approach 

for accelerating such operations, general-purpose GPU 

(GPGPU)-based digital computing platforms remain the 

industry standard. This persistence stems from the intrinsic 

advantages of digital design: process-agnostic reusability, 

established design flows, and inherently precise computation. 

However, digital-centric computing is not without its 

limitations. In conventional digital systems, arithmetic logic 

units (ALUs) and memory modules are physically separated 

and connected via bandwidth-limited buses. Consequently, 

both computation speed and energy efficiency are 

bottlenecked by data movement constraints. 

CIM architectures address this challenge by leveraging 

the intrinsic parallelism of memory arrays to accelerate 

matrix-vector multiplication (MVM). In CIM systems, 

matrix elements are mapped to memory states, while input 

vectors are applied to input terminals. A single memory 

access yields an analog signal—either current or voltage—

that directly represents the result of the MVM operation. 

CIM can be broadly categorized into two types based on 

their physical operating principles: Kirchhoff’s current law 

(KCL)-based CIM [4–6] and capacitive coupling principle 

(CCP)-based CIM [7–9]. As summarized in Table 1, these 

two approaches differ in how they represent matrix and 

vector quantities. KCL-CIM represents matrix elements as 

conductances, input vectors as voltages, and produces 

current-mode outputs. In contrast, CCP-CIM represents 

matrix elements using capacitance, applies differential input 

voltages, and generates voltage-mode outputs. 

CCP-CIM is inherently more energy-efficient than KCL-

CIM, as it avoids continuous current flow paths and thus 

minimizes static power consumption. Capacitive coupling is 

also better suited for low-leakage and low-power circuit 

designs, making it an ideal candidate for energy-constrained 

AI accelerators. Furthermore, CCP-CIM produces MVM 

outputs as analog voltages within a fixed voltage headroom, 

which simplifies circuit design under low-voltage conditions 

and mitigates dynamic range management issues. 

Conventional CCP-CIM implementations typically rely 

on analog-to-digital converters (ADCs)—such as successive 
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approximation register (SAR) ADCs [7] or Flash ADCs 

[8]—to digitize the analog output. Although these ADCs 

provide high precision, they often introduce considerable 

static power consumption, which undermines the low-power 

advantage of CCP-CIM architectures. 

To overcome this challenge, we propose a low-power 4-

bit neuron circuit operating in the temporal domain. The 

proposed neuron digitizes analog voltage outputs using a 

temporal-to-digital converter (TDC), and additionally 

enables control of output signal timing via analog biasing. 

This design allows for adjustment of the signal window of 

interest. Our prior work [9] demonstrated the feasibility of 

energy-efficient, temporally encoded neuron circuits for 

CCP-CIM. Building on that foundation, we further enhance 

energy efficiency by integrating overflow and underflow 

detection mechanisms. 

II. DESIGN METHODOLOGY 

Figure 1 shows the configuration of the proposed neuron 

circuit. A single neuron circuit consists of a neuron core and 

TDC. Detailed explanations of each block are provided in 

the following subsections. The design was implemented 

using the TSMC 28 nm logic CMOS process. 

 

A. Neuron circuit design 

Figure 2 presents a schematic comparison between the 

previous and proposed neuron core designs. The control 

signals include RSTB, EN, RESET, and INIT, while VIN, 

VPREC, and VB are analog input signals. In particular, the 

VIN signal is directly connected to the memory array, where 

the CCP-based analog MVM operation takes place. As a 

result, the analog MVM output—represented as a voltage 

level—is fed into the neuron core via VIN. During inference, 

the VIN voltage swings both positively and negatively 

around the precharged level. The detailed inference scheme 

utilizing the memory array has been described in our 

previous work [9]. 

Figure 3 shows the timing diagram of the neuron circuit. 

The operation of the neuron circuit consists of three phases: 

Phase-I, Phase-II, and Phase-III. In the Phase-I, the circuit is 

reset by either the RSTB or INIT signal, which charges the 

INTERNAL_NODE to VDD. In the Phase-II, the EN signal 

is asserted (set high), enabling the neuron circuit to integrate 

the VIN input. In the Phase-III, the EN signal is deasserted 

(set low), and the RESET signal is asserted (set high), 

causing the INTERNAL_NODE to discharge toward VSS 

through a transistor controlled by the RESET signal. When 

the voltage of the INTERNAL_NODE drops below the 

threshold voltage of the amplifier, the amplifier is triggered 

and the neuron output (NEURON_OUT) is generated. This 

output is subsequently passed to the temporal-to-digital 

converter (TDC) stage. 

The discharge rate during Phase-II is tuned by the 

reference voltage VPREC, while its dynamic range is 

bounded by VPREC±ΔVIN , which depends on the MAC 

output vector values. This ensures that the 

INTERNAL_NODE voltage spans a sufficient range before 

Phase-III, allowing the TDC to reliably quantize the result 

within the 10 ns cycle budget at 100 MHz operation. 

The previous neuron design, shown in Figure 2(a), was 

fabricated using the TSMC 180 nm CMOS logic process. 

The input stage consisted of a single transistor. Since the 

transistors controlled by the EN and RESET signals act as 

electrical switches, their effect on the signal path could be 

Figure 2. Comparison of neuron core schematics: (a) prior design and 

(b) proposed design. 

TABLE I. Comparisons of KCL and CCP Type 

Type KCL CCP 

Matrix 

element 
Conductance Capacitance 

Input 

vector 
Voltage level Voltage difference 

Output 

vector 
Current level Voltage level 

 

Figure 1. Neuron circuit architecture. 

 

                        

   

     

    

  

   

             

          

Figure 3. Neuron operation timing diagram. 
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neglected. In this earlier design, the short-channel effect 

(SCE) was mitigated by employing transistors with 

sufficient channel length. 

The proposed design introduces architectural 

enhancements over the previous version: improvement of 

input stage transconductance linearity, adjustable discharge 

rate in Phase-III a feedback input path, and an overflow 

detection mechanism. Figure 2(b) illustrates the proposed 

neuron circuit designed in the TSMC 28 nm CMOS logic 

process. In advanced technology nodes, SCE becomes more 

pronounced compared to older nodes. To address this issue, 

the input stage and reset path have been modified to include 

two cascaded transistors. 

This modification not only suppresses SCE but also 

improves the linearity of the input stage’s (gm). Figure 4 

compares the simulated transfer characteristics and 

transconductance of (a) the previous design and (b) the 

proposed design. The previous design exhibits a 

monotonically increasing gm, which impairs accurate 

mapping between input voltage and output current, thereby 

degrading the linearity of the neuron core. 

In contrast, the proposed design achieves a peak gm near a 

designated bias voltage of VPREC and then decreases. This 

behavior is well aligned with the inference operation. By 

setting VPREC equal to the precharge voltage of the memory 

array, a plateau region in gm is utilized, ensuring minimal 

variation across the input voltage range relevant to analog 

MAC outputs. 

In addition, the proposed design incorporates a cascaded 

transistor configuration in the reset path, which allows the 

discharge rate of the INTERNAL_NODE to be modulated 

via the VB bias voltage. This capability introduces a 

dynamic control mechanism over the neuron's operating 

range. By adjusting the discharge rate, the neuron can 

effectively shift the point of interest within the analog MVM 

output range. 

Specifically, when the integrated result of the MVM 

operation is too small to trigger the amplifier within the 

standard discharge profile, increasing the VB bias 

accelerates the discharge, allowing even smaller MVM 

outputs to reach the amplifier's threshold and produce a valid 

output. Conversely, lowering the VB bias slows down the 

discharge, making the neuron more selective and responsive 

only to larger MVM results. This tunability enables dynamic 

range operation, allowing the neuron circuit to adaptively 

focus on specific regions of the input distribution—either 

amplifying low-range signals or filtering out smaller 

contributions to prioritize higher analog weights. 

Another key improvement is the addition of a feedback 

control path and an overflow detection mechanism, which 

interfaces with the subsequent TDC stage. In the prior 

design, overflow detection was absent, leading to 

unnecessary activations of the TDC and considerable energy 

dissipation. To address this, the proposed design generates 

an overflow signal that both triggers TDC response and 

generates feedback to the neuron core. 

Figure 5 illustrates the control signal generation circuit for 

the proposed neuron core, including the overflow-induced 

feedback logic. Upon detection of overflow, the TDC clamps 

its output and a feedback signal pulls down the 

INTERNAL_NODE of the neuron core for a short duration 

(< 1 ns). This prevents the inverter-based comparator from 

remaining in its high-current region, thereby significantly 

improving energy efficiency. This technique is also applied 

to the generation of the INIT signal. When the RESET signal 

is turned off, a short-duration INIT pulse is generated, which 

briefly pulls up the INTERNAL_NODE of the neuron core. 

 

B. Temporal-to-digital converter (TDC) design 

Figure 6 (a) shows the schematic of the 4-bit TDC block 

used in the proposed neuron circuit, which converts 

temporally encoded signals into digital outputs and 

incorporates overflow detection logic. The timing resolution, 

corresponding to the least significant bit (LSB), is 

approximately 700 ps, which is determined by the delay 

element. This resolution is sufficient to cover the 10 ns 

conversion window corresponding to a single 100 MHz 

system clock cycle, and it is independent of workload 

characteristics since the analog MAC accumulation is 

completed during Phase-II prior to the voltage-to-time 

conversion. 

Figure 4. Current and transconductance characteristics of the input 

stage for (a) the prior neuron circuit and (b) the proposed neuron 

circuit 

Figure 5. (a) Input signal generate logics for the proposed neuron 

core. (b) Timing diagram of the edge detectors (posedge/negedge). 
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When an overflow signal is asserted, the TDC bypasses its 

normal evaluation path and forces its output to the maximum 

digital value, thereby preventing unnecessary digital 

conversions and improving overall system energy efficiency. 

The TDC design is thus tightly coupled with the neuron core 

to ensure both accuracy and power-aware operation. 

Figure 6 (b) and (c) shows nonlinearity (DNL) and 

integral nonlinearity of TDC. Linearity was evaluated on a 

post-layout simulation. Across three representative PVT 

corners—Typical (TT, 25 °C, 0.9 V), Worst (SS, 125 °C, 0.81 

V), and Best (FF, −55 °C, 0.99 V)—the measured DNL/INL 

remained within ±0.17 LSB, ensuring robust quantization. 

 

 
III. RESULTS AND DISCUSSIONS 

Figure 7 shows the simulation results of the proposed 

neuron circuit. While the EN signal remains high, the VIN 

signal—driven by the MVM result—varies continuously. 

The neuron core integrates this input, leading to a voltage 

drop at the INTERNAL_NODE whose slope is proportional 

to the MVM result. 

Following the deassertion of the EN signal, the RESET 

signal is asserted, initiating a linear discharge at the 

INTERNAL_NODE. Once the voltage crosses the trip point 

of the inverter-based comparator, the NEURON_OUT signal 

is generated and then digitized by the TDC block. 

For energy consumption analysis, the operation of the 

neuron circuit is categorized into three distinct states: 

underflow, normal, and overflow. 

– In the underflow condition, the INTERNAL_NODE 

voltage fails to reach the trip point of the comparator before 

the RESET signal is deasserted, and thus no output pulse is 

generated. 

– In the normal condition, the INTERNAL_NODE 

reaches the trip point after the EN signal is deasserted but 

before the RESET signal is deasserted, resulting in valid 

output. 

– In the overflow condition, the INTERNAL_NODE 

reaches the trip point before the EN signal is deasserted, 

triggering premature activation of the output. 

Figure 8 compares the discharge rate linearity between the 

prior neuron circuit and the proposed neuron circuit. The 

slope represents the discharge rate of the 

INTERNAL_NODE during Phase-II operation, while ΔVIN 

denotes the input voltage deviation from VPREC, as shown 

in Figure 7. The R2 values of the prior and proposed circuits 

are 0.98526 and 0.99985, respectively. This improvement 

corresponds to approximately a 99% reduction in the 

residual error, demonstrating that the proposed neuron 

circuit achieves a near-linear analog input–output transfer 

Figure 7. Schematic simulation results 

 

   

   

   

Figure 6. (a) Schematic of temporal-to-digital converter for 

proposed neuron circuit. (b) DNL and (c) INL measurement 

results obtained from post-layout simulation. 

 

Figure 8. Discharge rate comparisons between prior neuron circuit and 
proposed neuron circuit. 
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characteristic. 

Figure 9 compares the total energy consumption of the 

prior and proposed neuron circuits for each operating 

condition. For a fair comparison and to exclude process 

scaling effects, both designs were implemented using the 

same 28 nm technology node. In the underflow condition, 

the prior design exhibits slightly better energy efficiency, as 

the additional logic blocks in the proposed design introduce 

overhead in this case. 

However, in both the normal and overflow conditions, the 

proposed neuron circuit demonstrates improved energy 

efficiency. Under the overflow condition, the bypass path 

effectively reduces energy consumption by avoiding 

unnecessary operation of the TDC block. In the normal 

condition, the pull-up technique applied to the 

INTERNAL_NODE also contributes to energy savings. A 

detailed energy consumption across conditions is 

summarized in Table II. 

 

 
IV. CONCLUSION 

This work presents an energy-efficient neuron circuit 

tailored for CCP-CIM systems. The proposed design 

integrates a plateaued transconductance (gm) input stage with 

a temporal-domain output stage using a TDC, along with 

overflow/underflow detection and feedback-assisted signal 

control to reduce unnecessary energy consumption. By 

modulating the analog bias in the reset path, the neuron 

dynamically shifts its point of interest within the analog 

MVM output range. This tunable sensitivity enables more 

effective activation under varying inference conditions, 

particularly when batched inputs cause small but non-

negligible overflow. 

The proposed circuit was implemented in a TSMC 28 nm 

logic CMOS process. Simulation results demonstrate 

substantial energy savings, especially under overflow 

conditions, enabled by TDC bypass logic and overflow 

feedback to the comparator node. Although the design incurs 

marginal overhead under underflow scenarios, its overall 

energy efficiency and adaptability make it well suited for 

low-power, edge-level analog AI inference systems. 
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Figure 9. Energy comparison of neuron circuits 

 

TABLE II. Summary of Energy Consumption 

 Operation 

condition 

Average energy consumption 

(fJ/operation) 

Total 
Neuron 

Core 
TDC 

Prior  

neuron 

design 

Underflow 546.7 120.5 426.2 

Normal 739.3 273.0 466.3 

Overflow 746.2 258.8 487.5 

Proposed 

neuron 

design 

Underflow 561.7 118.2 443.5 

Normal 694.3 206.2 488.1 

Overflow 346.3 227.4 118.9 
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