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Abstract - Modern automobiles increasingly support a variety 

of advanced features, with autonomous vehicle safety gaining 

heightened attention. This has created a growing demand for 

sensor technology that can accurately detect environmental 

changes. One of the critical challenges in automotive sensor 

technology is the need for a temperature-compensated 

reference. This paper focuses on designing a temperature-

independent reference current source in this MPW. 

Conventional reference current sources are highly sensitive to 

environmental conditions, especially temperature fluctuations, 

leading to varying output values. Although several 

temperature-compensated reference current sources have been 

developed, effectively addressing the residual temperature 

coefficient resulting from process variations remains a 

challenge. To tackle this issue, we propose a circuit that 

compensates for residual temperature coefficients, enabling the 

creation of a stable, temperature-independent reference 

current source. This design aims to provide a reliable solution 

for the automotive sensor technology field, where maintaining 

accuracy across a range of environmental conditions is 

essential. 
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I. INTRODUCTION 

As automobiles integrate more features and focus on 

safety increases, especially in autonomous vehicles, the 

demand for highly accurate sensor technology that remains 

reliable despite environmental changes is becoming 

increasingly important. While sensor accuracy is influenced 

by various factors, it fundamentally depends on a reference 

value, meaning the performance of the sensor is closely tied 

to the accuracy of the circuit providing this reference. These 

circuits include reference voltage sources, reference current 

sources, and reference frequency generators, with the sensor 

output indicating how much the input has deviated from 

these reference values. Despite the significant role this field 

plays, reference current sources have historically been more 

limited in circuit design options compared to reference 

voltage sources, which are commonly used in analog-to-

digital converters (ADCs), or reference frequency generators, 

which serve frequency synthesizers [1]. Reference current 

sources, however, offer versatility in applications like 

current biasing and current-based DACs. Recognizing the 

importance of developing a reference current source that 

functions independently of environmental conditions, we 

proposed such a system. Among environmental factors, 

temperature fluctuations are known to particularly impact 

reference current sources. This is because generating current 

involves converting voltage into current, and the physical 

properties of the components used in this process (such as 

MOSFETs and resistors) are highly sensitive to temperature 

changes. Consequently, if a reference current source without 

temperature compensation is used in sensor applications, the 

output may vary with ambient temperature changes, even if 

the actual input remains constant. Thus, it is critical to 

employ a temperature-compensated reference current source. 

II. CURRENT REFERENCE  

The proposed architecture is an expansion of the process, 

voltage and temperature (PVT) insensitive current reference 

proposed in [2].  

 

A. PVT-Insensitive Current Reference 

Fig. 1. shows the compensation voltage generator for 

current reference with process-insensitive temperature 

compensation [2]. This consists of a compensation voltage 

generator (CVG) and a current driver. The basic idea is to 

match the temperature coefficient (TC) of the resistance with 

the temperature coefficient of the compensation voltage 

𝑉𝑐𝑜𝑚𝑝 to achieve a low TC. 

The first-order temperature dependency of a resistor can 

be modeled as [3]  

 

𝑅(𝑇) = 𝑅0(1 + 𝛼𝑟𝑒𝑠∆𝑇) (1) 

 

where 𝑅0 is the value of resistance at nominal temperature 

𝑇0 and 𝛼𝑟𝑒𝑠 is its first order TC, which remains unaffected 

by process variations.  

The current of 𝑀1 and 𝑀2 operating in the subthreshold 

region is as  

 

 

 

a. Corresponding author; chosta@kaist.ac.kr 
 
Manuscript Received May 26, 2025, Revised Aug. 28, 2025, Accepted 
Aug. 29, 2025 
 
This is an Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 

which permits unrestricted non-commercial use, distribution, and reproduction in any 

medium, provided the original work is properly cited. 

27

mailto:chosta@kaist.ac.kr
http://creativecommons.org/licenses/by-nc/4.0


IDEC Journal of Integrated Circuits and Systems, VOL 11, No.4, October 2025                                                            http://www.idec.or.kr 

Fig. 1. PVT-insensitive current reference proposed in [2].  
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where 𝜇𝑝 is the mobility of carrier, 𝐶𝑂𝑋 is the gate-oxide 

capacitance, 𝑊 and 𝐿 are the channel width and length, 

respectively,  𝑁 is the size ratio of 𝑀1 and 𝑀2, and 𝑉𝑇𝐻1 

and 𝑉𝑇𝐻2  are the threshold voltages of 𝑀1  and 𝑀2 , 

respectively, and 𝑉𝑇 is the thermal voltage, and 𝑚 is the 

subthreshold slope factor. 

Since 𝐼𝑀1  and 𝐼𝑀2  are equal, 𝑉𝑐𝑜𝑚𝑝  can be expressed 

as follow:  
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where 𝑉𝑐𝑜𝑚𝑝0 =
𝑉𝑚𝑖𝑑
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TC of 𝑉𝑐𝑜𝑚𝑝 can be controlled by the size ration 𝑁 which 

is sorely independent of process variation.  

Based on the above results, 𝐼𝑟𝑒𝑓  shown in fig. 1. can be 

expressed as  

 

𝐼𝑟𝑒𝑓 =
𝑉𝑐𝑜𝑚𝑝0(1 + 𝛼𝑐𝑜𝑚𝑝∆𝑇)
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𝐼𝑟𝑒𝑠  remains unaffected by temperature variations on 

condition 𝛼𝑐𝑜𝑚𝑝 = 𝛼𝑟𝑒𝑠.  

 

B. Proposed Current Reference 

In order for the current reference from the previous section 

to achieve zero TC, 𝛼𝑐𝑜𝑚𝑝 and 𝛼𝑟𝑒𝑠 must perfectly match. 

However, in practice, due to mismatches in size, threshold 

voltage, and subthreshold slope, 𝛼𝑐𝑜𝑚𝑝 and 𝛼𝑟𝑒𝑠 may not 

match perfectly. Additionally, there is a dependency on the 

TC of the bandgap reference (BGR), which exhibits chip-to-

chip variation, requiring a compensation circuit for the 

BGR’s temperature dependency. To address these issues and 

enable compensation for the BGR’s TC spread, we proposed 

TC-tunable current reference structure as shown in Fig. 2. 

This consists of a TC-tunable compensation voltage 

generator and a current driver. 

Both the process variation of the TC for the poly resistor 

and the MIM capacitor are negligible; however, the 

resistance value of the poly resistor varies significantly with 

the process compared to the value of the MIM capacitance. 

Therefore, a switched capacitor-based resistor was used to 

improve the accuracy of the output current 𝐼𝑟𝑒𝑓. 

Through the same analysis as in the previous section, 

𝑉𝑐𝑜𝑚𝑝 can be expressed as 
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1
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where 𝑉𝐼𝑁 is the input voltage of the TC-DAC, 𝑚 is the 

subthreshold slope factor, 𝑘 is the Boltzmann constant, 𝑞 

is the electron charge, and 𝑁 represents the 𝑊/𝐿 ratio of 

the PMOS in the TC-DAC.  

The switched capacitor resistor can be modeled as [4] 

 

𝑅𝑒𝑞 =
1

𝐶𝑓𝑋𝑂

 (7) 

 

where 𝐶  is the capacitance and 𝑓𝑋𝑂  is the switching 

frequency. Then 𝐼𝑟𝑒𝑓  shown in Fig. 2. can be expressed as 

 
𝐼𝑟𝑒𝑓 = 𝑉𝑐𝑜𝑚𝑝 ∙ 𝐶 ∙ 𝑓𝑋𝑂 (8) 
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Fig 3. Proposed TC-DAC for post-cancellation of the residue temperature 

coefficient in the reference current after fabrication. 

 

 

Fig 4. Simulated temperature independent current reference output versus 

temperature variation.  

 

When using a crystal oscillator (XO) for the input 

frequency, its temperature coefficient is smaller than that of 

𝐶  and 𝑉𝑐𝑜𝑚𝑝  (less than 1 ppm/°C), allowing the output 

current to be represented by the following equation. 

𝐼𝑅𝐸𝐹 = 𝑓
𝑋𝑂

∙ 𝐶𝑜(1 + 𝛼𝐶 ∙ Δ𝑇) 

× 𝑉𝑐𝑜𝑚𝑝0(1 + 𝛼𝑐𝑜𝑚𝑝(𝑁) ∙ Δ𝑇) (9) 

 

where 𝛼𝑐 is the TC of capacitor. Therefore, by adjusting the 

size ratio 𝑁 to satisfy the following conditions, a zero TC 

current reference can be obtained.  

 
𝛼𝑐𝑜𝑚𝑝(𝑁) = 𝛼𝐶 (10) 

Due to non-idealities during chip fabrication, the 

temperature coefficient of the 𝐼𝑟𝑒𝑓  may not be completely 

eliminated. This residual TC is mainly caused by the 

variation in the TC of the BGR and the additional TC 

introduced by the offset of the op-amp used in the current 

driver. To further compensate for this, we proposed a TC-

DAC structure as shown in Fig. 3, which allows for 

additional compensation of the residual TC caused by 

process variation. The proposed TC-DAC includes a 7-bit 

TC control for post-fabrication TC compensation. It is 

designed to cover the full temperature coefficient range of 

the MIM capacitor. As a result, the output current of the 

proposed reference current source with temperature 

Fig. 2. Proposed temperature-compensated current reference with a tunable TC-DAC  
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variation is shown in Fig. 4. The output value of the 

reference current source at the nominal corner is 426.8 μA, 

with a TC of 6.389 ppm/°C across the automotive 

temperature range, demonstrating high thermal stability. 

Furthermore, even when residual temperature coefficients 

remain due to process variations, post-compensation can 

minimize the temperature coefficient.  

 

 
III. SIMULATION AND MEASUREMENT RESULTS  

The proposed current reference is designed and fabricated 

in a 180-nm CMOS process. The die photo is shown in Fig. 

5. At a supply voltage of 1.8V, the power consumption is 

391.41 µW, with a detailed breakdown provided in Fig. 6. 

Most of the power consumption occurred in the BGR, and it 

is expected that power consumption can be reduced by 

adopting a different voltage reference structure. The 

proposed current reference was measured with the setup 

shown in Fig. 7. A function generator was used instead of a 

crystal oscillator, and 𝐼𝑟𝑒𝑓  was measured using a source 

meter over a temperature range of -25°C to 125°C. The 

simulation results for the proposed structure across different 

corners are shown in Fig. 8. As shown in Fig. 8, simulations 

confirmed that the controllable TC range of the proposed 

TC-DAC can cover the switched capacitor TC variation 

across all corners. Therefore, after fabrication, zero-TC can 

be achieved by matching the TC of the switched capacitor 

resistor and the CVG TC through foreground calibration. 

The TC-DAC control code can be adjusted according to 

the process corner as shown in Fig. 9. The proposed structure 

can only cancel the first-order TC, leaving a second-order 

TC after compensation, which limits the ability to achieve 

perfect zero-TC. 

SWCAP

Resistor 

(32.3%) BGR 

(51.5%)

LDO

(11.3%)

Current Driver

(4.3%)

TC tunable CVG

(0.6%)
 

Fig 6. Power breakdown 

 

 
Fig 7. Measurement setup 

 

 
Fig 8. Simulated TC of 𝑉𝑐𝑜𝑚𝑝 vs 7-bit control of proposed TC-DAC. 

 

 

 

Fig 5. (a) Chip die photo after Chip-on-Board(COB), (b) Layout 
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TABLE I. Comparison of Different Current References 

Table 
This 
work 

JSSC 
2012[2] 

ISSCC 
2024[5] 

TCAS-II 
2020[6] 

JSSC 
2020[7] 

ISSCC 
2017[8] 

CICC 
2015[9] 

Technology(nm) 180 180 180 180 180 180 180 

IREF 406.24 uA 7.81 uA 10.9 uA 11.6 nA 1 nA 6.64 nA 10 uA 

Temperature 

Range(ºC) 
-25 to 125 0 to 100 -20 to 125 -40 to 120 -20 to 80 0 to 110 -40 to 80 

Avg. TC (ppm/ºC) 20.89 24.9 11.4 169 265 283 130 

Line 
Sensitivity(%/V) 

*0.448 0.13 0.036 1.08 1.40 1.16 0.5 

Area(mm2) 0.2403 0.023 0.08 0.054 0.332 0.055 0.005 

Supply (V) *1.7 to 2.4 1 to 1.2 1.3 to 2.4 0.8 to 2 1.5 to 2.0 1.3 to 1.8 2.4 to 3.0 

* Simulation

 

(a) 

(b) 

(c) 

Fig 9. Simulation result of 𝐼𝑟𝑒𝑓 over process corners. 

 

 
(a) 

 
(b) 

Fig 10. (a) Measured IREF vs temperature variation (b) Normalized 𝐼𝑟𝑒𝑓 vs 

temperature variation. 

 

To verify temperature stability, a temperature sweep was 

conducted, measuring the output current at 25°C intervals 

over a range from -25°C to 125°C while selecting the 

optimal code. A TC of 20.89 ppm/°C was achieved (Fig. 10). 

The performance of the proposed current reference is 

summarized in Table I. 
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IV. CONCLUSION  

In this paper, we have presented a design for a 

temperature-independent current reference with tunable 

temperature coefficient (TC) compensation. The proposed 

architecture addresses the challenges associated with process 

variations and residual temperature coefficients, which are 

critical issues in achieving reliable current sources in 

automotive sensor applications. Through the integration of a 

switched capacitor resistor and a TC-tunable compensation 

voltage generator, we successfully mitigated the effects of 

temperature fluctuations and process variations. The final 

design achieved a current reference with a temperature 

coefficient of 20.89 ppm/°C, demonstrating high thermal 

stability across a wide range of temperatures. This level of 

performance is well-suited for automotive and other high-

precision applications where temperature independence is 

crucial. Future work may explore further optimization of the 

compensation techniques to enhance the robustness of the 

design under extreme environmental conditions. 
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