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Abstract - In this paper, an ultra-wide range CMOS
temperature sensor is designed for applications in cryogenic
and room temperature environments, particularly targeting
quantum computing systems where control circuits are
integrated into the cryogenic domain. A beta multiplier
structure is employed as the sensing element to generate a
temperature-proportional current. By leveraging the
temperature coefficient (TC) of MOSFET mobility and resistor
characteristics, the sensor ensures a stable TC. The generated
current serves as the bias for a relaxation oscillator, which
facilitates  temperature-to-frequency  conversion.  The
relaxation oscillator operates with a lower TC than the beta
multiplier, with its frequency variation determined by the bias
current. The resulting frequency is then digitized using a 16-bit
counter. The sensor is designed to operate over a temperature
range of -270°C to 30°C. Simulation results indicate that the
oscillator produces 20.6 KHz at -250°C with a TC of 0.75
KHz/°C.

Keywords—CMOS,  temperature sensor, cryogenic,
relaxation-oscillator.

I. INTRODUCTION
Temperature sensors are widely used in various

applications requiring precise thermal monitoring. In
integrated circuits, they are often embedded to enable real-
time temperature-dependent control. While conventional
temperature sensors are designed to operate in the room
temperature range, they become ineffective in cryogenic
environments [1],[2],[3],[4],[5].

Quantum computing systems, which rely on the precise
qubit control, were initially implemented with room-
temperature control circuits as shown in Fig. 1. However, as
these systems evolved, it became evident that the long
interconnect cables required to link room-temperature
electronics with cryogenic qubits introduced significant
challenges. High parasitic resistance, increased power
dissipation, and unwanted noise from cabling severely
impacted system stability and efficiency [6]. To mitigate
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Fig. 1. Quantum computing system.

these issues, the industry has shifted towards integrating
more of the control circuitry directly into the cryogenic
environment. Even though integrated control circuits are
designed to operate at cryogenic temperatures, their
electrical characteristics, such as threshold voltage, mobility,
and leakage current, can still vary significantly with
temperature. These variations can impact timing accuracy
and analog performance. Therefore, precise on-chip
temperature monitoring remains essential to ensure stable
operation and dynamic compensation in cryogenic control
systems. This transition necessitates the development of
circuits, including temperature sensors, that function reliably
at cryogenic temperatures, typically around 4 K.

Temperature sensing within the cryogenic environment is
essential for ensuring the stable operation of quantum
computing systems. The electrical characteristics of
MOSFETs and passive components change significantly at
low temperatures, affecting circuit behavior and
necessitating precise temperature monitoring. Conventional
temperature sensors [1],[2],[3] based on bipolar junction
transistors (BJTs) fail under such conditions due to their
unreliable operation at cryogenic temperatures. Previous
research has explored CMOS-based temperature sensors
[11,[2],[3], but these solutions often require complex
reference circuits that are unsuitable for extreme cryogenic
environments.
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Fig. 2. Complement architecture of proposed temperature sensor.
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Fig. 3. Current mirror circuit.

This paper proposes a CMOS-based temperature sensor
that employs a beta-multiplier sensing element and a
relaxation  oscillator  for  temperature-to-frequency
conversion. Through MOSFET behavior analysis and
simulation, we demonstrate a stable, wide-range cryogenic
temperature sensor designed to support the growing demand
for cryogenic-compatible control circuits.

II. PROPOSED TEMPERATURE SENSOR

The proposed temperature sensor consists of three stages:
temperature-to-current  conversion, current-to-frequency
conversion, and frequency-to-digital signal conversion. In
the temperature-to-current conversion stage, a current
proportional to temperature is generated. This current can
either be proportional to absolute temperature (PTAT) or
complementary to absolute temperature (CTAT). Regardless
of whether PTAT or CTAT is used, the temperature
coefficient should remain constant. In the subsequent
current-to-frequency and  frequency-to-digital  signal
conversion stages, the objective is to design a temperature-
independent circuit with a low TC, ideally close to zero, to
ensure that the signal remains unaffected by temperature
variations. Ultimately, this ensures that the digital signal
output is directly proportional to temperature. As shown in
Fig. 2, the temperature sensor is implemented using circuits
optimized for each stage of conversion.

A. Temperature to Current Conversion
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To convert temperature information into a digital signal, a
sensing element is required to first transform temperature
variations into current or voltage. In this paper, we adopt a
beta-multiplier-based  sensing element to  convert
temperature variations into a proportional current, as
illustrated in Fig. 2. The sensing element is designed to
achieve a linear temperature-to-current conversion within a
specific range while maintaining a constant temperature
coefficient. The output current of the beta multiplier is given
by Equation (1):

2
N UnCox(W/L)N

1 1
Irer vl (1 _\/_7)2 (1)

Where Cox, W, L, and K are constant parameters that do
not affect the TC. Therefore, the TC of Irgr is determined
solely by the TC of the NMOS mobility u, and the resistor
R. As expressed in Equation (2), R7 has a temperature-
dependent coefficient «, allowing its value to vary
proportionally with temperature.

R = Rref[l + CZ(T - Tref)] (2)

When incorporating the temperature dependency, the
temperature coefficient (TC) of the reference current can be
approximated as Equation (3):

TCIREF ~ —26( -

1.5

TREF

3
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Fig. 5. Proposed relaxation oscillator.
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Fig. 6. Conventional bandgap reference circuit

As shown in Equation (3), the temperature coefficient of
Irer is primarily determined by the resistor's temperature
coefficient «. When a exhibits a CTAT behavior (i.e., the
resistance increases with temperature), the resulting Irer
shows a PTAT characteristic. In this work, this CTAT-like
resistor is used in a beta-multiplier circuit to generate a PTAT
current. This PTAT current is then mirrored through a current
mirror circuit to bias the oscillator, as illustrated in Fig. 3.
The resulting bias current, Igias, is defined by Equation (4) :

_ Wy, W
BIAS = (L), REF

which does not contain the TC term except Irer. Therefore,
the TC of the Ipias is only affected by the TC of the Irgr. The
generated current Igias biases the oscillator.

However, the beta multiplier may fail to operate under
certain initial conditions. If the initial conditions result in
zero current flow, additional control signals are required to
initiate operation. Given the limited number of interconnects
available in cryogenic environments, an internal start-up
circuit is necessary. In a scenario where the PMOS gate is
initially high and the NMOS gate is low, no current is
generated. To address this issue, a current path is established
through transistor M5 (Fig. 4), ensuring the proper
initialization of the gate voltages. The current path through
M5 is controlled via additional transistors M6 and M7,
which enable or disable the path as needed. During normal
beta multiplier operation, M5 is turned off, and current
continues to flow through the M6 and M7 path. To minimize
leakage current, a high-resistance resistor is employed in the
start-up circuit.
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Fig. 8. TC of resistor at beta multiplier (simulation).

B. Current to Frequency Conversion

The current-to-frequency conversion in the proposed
temperature sensor is performed using a relaxation
Oscillator, which converts the sensed current into a
frequency signal. As shown in Fig. 5, the relaxation
oscillator operates based on the charging and discharging of
a capacitor, which is driven by the current generated from
the sensing element. The capacitor voltage exhibits a ramp
waveform, where the charging and discharging rates vary
according to the input current.

This ramp signal is continuously compared to a fixed
external reference voltage (Vrer) by a comparator, which
generates a periodic clock signal (CLK) when the voltage
reaches a defined threshold. The frequency of this clock
signal is determined by the rate of charge and discharge of
the capacitor, which is controlled by the input bias current
Iiv. Since Iy increases with temperature due to its PTAT
characteristic, the oscillator frequency also increases
accordingly. The relationship between frequency and current
is expressed as Equation (5):

IIN

Cx AV ©®)

fosc =
where Iin is the PTAT bias current, C is the capacitor value,
and AV is the ramp peak voltage, both of which are designed
to be temperature independent. In the proposed circuit, the
delay introduced by the delay stage does not affect the
oscillation frequency, but rather modulates the duty cycle of
the output signal. The frequency is solely determined by the
capacitor charging time, which depends on the PTAT bias
current. Therefore, Equation (5) accurately models the
oscillation frequency without needing to incorporate the
delay time.
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TABLE I. Comparison with previous published CMOS temperature sensors.
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Parameter This work [7] 2] [3] [4]
Process 65nm 130nm 65nm 0.16pum 65nm
Chip area (mm?) 0.058 - 0.1 0.16 0.2
Sensing range(°C) -250 ~30 -180~0 =70 ~ 125 -55~125 -40 ~ 130
Supply Voltage (V) 1.2 1.2-1.3 12-13 1.5-2 1.5
Current consumption 6.9pA - 8.3pA 4.6uA 0.5pA
Power Consumption 8.28uW 1uWw 9.96uW 6.9uW 0.75pW
Based device CMOS CMOS BIT BIT CMOS
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Fig. 9. Generated Irgr at beta multiplier (simulation).

To ensure temperature stability, both the reference voltage
(Vrer) and the bias current used in the comparator must
exhibit a zero-temperature coefficient, making them
independent of temperature variations. Conventional
bandgap reference circuits, which rely on bipolar junction
transistor (BJT) devices, are not suitable for cryogenic
operation due to the unpredictable behavior of BJTs at
extremely low temperatures (Fig. 6). Instead, an MOSFET-
based alternative temperature-stable reference circuit is
required to maintain accurate oscillation characteristics in
the cryogenic region.

The output frequency generated by the relaxation
oscillator is fed into a 12-bit digital counter, which counts
the number of oscillation cycles within a fixed reference time
window. Since the oscillation frequency is proportional to
temperature, the resulting count value provides a direct
digital representation of the sensed temperature.

III. SIMULATION RESULTS

The proposed wide-range cryogenic temperature sensor
was implemented using the TSMC 65nm process (Fig. 7).
The core cell size of the temperature sensor, including the
sensing element, relaxation oscillator, and the 12-bit on-chip
digital counter, is 0.058 mm?. The design was simulated over
a temperature range of -250°C to 30°C (24K to 300K),
covering the cryogenic region up to room temperature. Fig.
8 shows the resistance variation with temperature. Based on

15

Fig. 10. Frequency-Temperature plot of relaxation oscillator (simulation).

the curve, the resistor exhibits a TC of approximately —
595ppm/°C, indicating a CTAT behavior. Using this resistor,
the beta multiplier achieves a reference current Irgr of 3.3nA
at -270°C (Fig. 9). The generated PTAT current is used to
bias the current-controlled relaxation oscillator, producing a
temperature-dependent frequency. The resulting frequency
exhibits a temperature coefficient of 0.75 kHz/°C (Fig. 10),
confirming a PTAT frequency characteristic. Table I
summarizes the performance of the proposed temperature
sensor and provides a comparison with previous temperature
Sensors.

IV. CONCLUSION

This paper was conducted after identifying the
characteristics of the devices through cryogenic region
simulations. Based on the analyzed device behavior, a beta-
multiplier-based sensing element with a well-defined
temperature coefficient was designed. The overall circuit
architecture consists of a sensing element incorporating a
beta multiplier and a current mirror, an oscillator controlled
by bias current, and a digital counter for frequency
measurement. The current generated by the sensing element,
determined by the resistor characteristics and device
parameters, is 3.3nA at a cryogenic temperature of -270°C.
This current is used as the bias current for the oscillator via
a current mirror. As the generated current increases linearly
with temperature, the oscillator frequency also varies
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linearly with temperature. The resulting frequency is 20.6
kHz at -250°C, with a TC of 0.75 kHz/°C. The proposed
temperature sensor is expected to significantly reduce
interconnect complexity, enhance system stability, minimize
circuit size, and improve cost efficiency in wide-
temperature-range applications.
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