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Abstract - In this study, we propose a 9x10 neuromorphic
architecture that utilizes stochastic spiking neurons and SRAM
as synapses. The stochastic spiking neuron features a capacitor-
less structure, reducing hardware complexity and enabling low-
power operation. Additionally, binary SRAM is employed as
synapses to further enhance low-power characteristics. The
proposed architecture was fabricated using the TSMC 28nm
CMOS process. Simulation results confirm that the proposed
design achieves a high energy efficiency of 60.55 TOPS/W.
Through this approach, we aim to develop a low-power
artificial neural network suitable for edge devices.
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I. INTRODUCTION

Al has recently emerged as a core technology in next-
generation industries, leading to an increasing demand for
large-scale data processing. However, the traditional von
Neumann architecture, in which the processing unit and
memory unit are separate, faces challenges in large-scale
parallel computation due to bottlenecks. To address this von
Neumann bottleneck, neuromorphic architectures inspired
by the human brain have been proposed.

Spiking neural networks (SNNs) are a type of
neuromorphic architecture that mimics the way biological
neural networks process information. In general, SNNs
operate by receiving spikes from input neurons, performing
multiplication with synaptic weights, and summing the
computed values in the output neurons. When the membrane
potential exceeds a certain threshold, an output spike is
generated. Since neural interactions are processed through
spikes and operate in an event-driven manner only when
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signals occur, SNNs offer the advantage of low power
consumption. Due to this low-power characteristic, SNNs
are well-suited for next-generation Al hardware. [1],[2],[3]

In this paper, we propose the design of a spiking neuron
that operates with reduced energy consumption by using
stochastic neurons that generate spikes with a certain
probability for given inputs. In our previous study [4], we
introduced the concept of the '"stochastic bit",
demonstrating its potential to implement SNNs in a power-
efficient manner. The synapses are implemented using 1-bit
SRAM to achieve a simple operational mechanism. The
fabricated chip was manufactured using TSMC's 28nm
process, implementing a 9%10 input array.

II. CIRCUIT DESIGN

A. Stochastic Spiking Neuron Circuit

We propose a binary spiking neural network utilizing
stochastic bits to design an energy- and memory-efficient
edge neuromorphic computing circuit. The key feature of
stochastic SNN is its probabilistic bit generation mechanism,
where the logic high and low states are determined by a
sigmoid probability function based on the input code.

To implement the stochastic core circuit shown in Fig. 1,
the input signals were designed in a digital format as
RCODE<4:0> and LCODE<4:0>. These input values are
applied to the gates of PMOS transistors forming the Left
wing and Right wing. This configuration determines the
current flowing through the transistors on the Left and Right
sides, which is then supplied to the cross-coupled inverter.

Consequently, the inverter's output nodes, Output A (OA)

and Output B (OB), are determined based on the current
difference between the Left and Right sides, where one node
becomes high and the other low.

Using this probabilistic mechanism, the stochastic core
circuit was employed as the neuron of the spiking neural
network, generating spikes based on the input values. Unlike
the commonly used Integration-and-Fire (IF) neurons in
other spiking neural networks, this design does not require
capacitors for charge storage, enabling low-power operation.
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Fig. 1. Stochastic core circuit (a) schematic and (b) layout.
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Fig. 2. Timing diagram of output A/B based on input signals EN/RD.

The simulation results show that, based on the Enable (EN)
and Read (RD) signals, spikes are generated with a sigmoid

probability according to the input code, as illustrated in Fig.2.

The input code represents the difference between RCODE
and LCODE. When all right-wing transistors corresponding
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to RCODE are turned on and all left-wing transistors
corresponding to LCODE are turned off, the configuration is
111112 - 000002, which corresponds to an input code of 31.
In this case, all 1000 spike events occur at node A, resulting
in a spike probability of 100%. Conversely, when the
configuration is 000002 - 111112, corresponding to an input
code of -31, all 1000 spike events occur at node B, yielding
a spike probability of 0%.

The measurement results, as shown in Fig.3, confirm that
the number of generated spikes varies according to the input
code. Fig.3 (a) presents an oscilloscope capture of the spike
events when the input code is -31, demonstrating a near 0%
spike probability. In contrast, Fig.3 (b) shows the
oscilloscope capture when the input code is 31, where the
output spikes occur with nearly 100% probability. The
number of output spikes was measured by sweeping the
input code from -31 to 31 while applying 1000 EN signals.

SPIKE A

SPIKE A

(b)

Fig. 3. Measurement of spike generation result according to input code (a)
Input code =-31 =0 % (b) Input code =31 = 100 %.

In the simulation results shown in Fig. 4(a), spikes are
generated based on a sigmoid-shaped probability. The
measurement results in Fig. 4(b) similarly demonstrate that
spikes are generated with a nonlinear probability. The supply
voltage (VDD) was set to 1.15 V, and to compensate for the
increased VDD, a high signal was applied to the gate of the
lower NMOS transistor using the NSIZE code.

The measurement results indicate that when the NSIZE
code is fully high (111.), the observed spike generation
closely matches the simulation results.
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Fig. 4. Spike generation probability according to the stochastic input
neuron's code (a) Cadence simulation result (b) Chip measurement results.
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Fig. 5. 9x10 array architecture.

B. 9x10 Array Architecture

For the pattern classification simulation, the array consists
of 9 input neurons, 10 output neurons, and 90 one-bit binary
SRAM synapses, as shown in Fig.5. Spikes generated by the
input neurons are multiplied by the synaptic weights and
transmitted to the spike counter. The counter counts the
number of spikes occurring in each column and forwards this
information to the modulator. The modulator converts the
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Fig. 6. (a) 10 types of input patterns, (b) Pattern classification simulation
input scheme, and (c) Simulation result of inference pattern 1.

spike count into a format suitable for input to the output
neurons.

In the output neurons, the stochastic core circuit generates
spikes with a certain probability. The classification follows a
rate coding approach, where the output neuron that produces
the highest number of spikes is considered the correct
result.[5],[6],[7]

1I. EVALUATION

A. Pattern classification simulation

For the array simulation, ten arbitrary patterns were
defined, as shown in Fig.6 (a), and each was matched to one
of the ten output neurons. The 3x3-sized patterns were
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applied to the nine input neurons. The weights were
determined through MATLAB simulations, and inference
simulations were conducted using the Cadence tool.

The results from the Cadence simulation, as shown in
Fig.6 (c), confirm that the output neuron corresponding to
pattern 1 generates the highest number of spikes,
demonstrating successful pattern matching.

Based on the experimentally measured stochastic core
probability graph, the MATLAB simulation results confirm
the expected behavior, as shown in Fig.7. The measured
spike generation probabilities were incorporated into the
MATLAB code to simulate the stochastic spike generation
process.

The spike generation probability values used in the
simulation correspond to the average measured values when
NS = 111.
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Fig. 7. Pattern classification simulation result.

B. Power Consumption

Power consumption simulations were conducted based on
200 RD spikes, a core VDD of 1.15 V, and a peripheral
circuit VDD of 0.9 V. The stochastic core consumes 3.36 pW
of power, and since it is included in 9 input neurons and 10
output neurons, the total power consumption amounts to
63.84 uW. The modulator connected to each output neuron
consumes a maximum of 2.58 pW per unit, while each pulse
counter consumes a maximum of 16.51 uW, resulting in a
total power consumption of 190.9 pW ( 2.58 x 10 +
16.51 x 10). The timing controller consumes 669.1 nW. In
the synapse array, each AND gate operation, which
multiplies the stored SRAM value and the input spike,
consumes 105.7 nW, leading to a total synapse array power
consumption of 9.5 pW. Consequently, the total power
consumption during the inference process is 264.24 uW.

During inference, 90 synapses perform multiplication
operations, and 10 output neuron pulse counters perform
addition operations. As a result, the system achieves an

energy efficiency of 60.55 TOPS/W (%).

As shown in Table I, the comparison with previous studies
confirms that using stochastic neurons achieves higher
energy efficiency compared to LIF SNN. Additionally, the
use of SRAM enables fabrication with standard CMOS
processes, allowing for low-cost manufacturing. Despite
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employing a smaller technology node compared to reference
[4], our work exhibits lower energy efficiency (TOPS/W).
This is attributed to utilizing a core voltage of 1.15 V rather
than 0.9 V, and targeting a smaller-scale 9x10 array for basic
pattern classification, as opposed to the 784x400x10 array
designed for MNIST classification in reference [4].

TABLE 1. Comparison of proposed method with state-of-the-art

This
S N 73 T I R I ) [10]
TOPS/W 6?2'25 8(99'?)9 1(26;9 1(307 17.56
(Tech node) nm) nm) nm) nm) (40 nm)
. 784x4 | 784%3
Network size 9%10 00x10 00x10 X X
System Stocha | Stocha | Stocha
fy i stic stic stic LIF LIF
configuration SNN SNN SNN
Flip- SOT-
Synapse SRAM | SRAM | RRAM Flops MRAM
Weight Ibit | Ibit | 3bit | 8bit 4bit
resolution
CMOS-
compatible O O X @) X
synapse

IV. CONCLUSION

This study fabricated an artificial neural network using
stochastic spiking neurons and verified its operation through
measurements. The stochastic neuron operates based on
stochastic behavior, directly generating spikes without
accumulating input values, enabling lower power
consumption compared to conventional LIF or IF neurons.

Through this approach, a high energy efficiency of 60.55
TOPS/W was achieved. The proposed architecture aims to
overcome the energy efficiency limitations caused by the
von Neumann bottleneck and serves as a suitable hardware
platform for next-generation Al applications.

The current 9x10 single-layer array can be further
developed into a more advanced array with higher accuracy
and integration, offering the potential for enhanced
performance and scalability.
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