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Abstract - In this study, we propose a 9×10 neuromorphic 
architecture that utilizes stochastic spiking neurons and SRAM 
as synapses. The stochastic spiking neuron features a capacitor-
less structure, reducing hardware complexity and enabling low-
power operation. Additionally, binary SRAM is employed as 
synapses to further enhance low-power characteristics. The 
proposed architecture was fabricated using the TSMC 28nm 
CMOS process. Simulation results confirm that the proposed 
design achieves a high energy efficiency of 60.55 TOPS/W. 
Through this approach, we aim to develop a low-power 
artificial neural network suitable for edge devices. 
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I. INTRODUCTION  

AI has recently emerged as a core technology in next-
generation industries, leading to an increasing demand for 
large-scale data processing. However, the traditional von 
Neumann architecture, in which the processing unit and 
memory unit are separate, faces challenges in large-scale 
parallel computation due to bottlenecks. To address this von 
Neumann bottleneck, neuromorphic architectures inspired 
by the human brain have been proposed. 

Spiking neural networks (SNNs) are a type of 
neuromorphic architecture that mimics the way biological 
neural networks process information. In general, SNNs 
operate by receiving spikes from input neurons, performing 
multiplication with synaptic weights, and summing the 
computed values in the output neurons. When the membrane 
potential exceeds a certain threshold, an output spike is 
generated. Since neural interactions are processed through 
spikes and operate in an event-driven manner only when 

signals occur, SNNs offer the advantage of low power 
consumption. Due to this low-power characteristic, SNNs 
are well-suited for next-generation AI hardware. [1],[2],[3] 

In this paper, we propose the design of a spiking neuron 
that operates with reduced energy consumption by using 
stochastic neurons that generate spikes with a certain 
probability for given inputs. In our previous study [4], we 
introduced the concept of the "stochastic bit", 
demonstrating its potential to implement SNNs in a power-
efficient manner. The synapses are implemented using 1-bit 
SRAM to achieve a simple operational mechanism. The 
fabricated chip was manufactured using TSMC's 28nm 
process, implementing a 9×10 input array. 

II. CIRCUIT DESIGN 

A. Stochastic Spiking Neuron Circuit  

We propose a binary spiking neural network utilizing 
stochastic bits to design an energy- and memory-efficient 
edge neuromorphic computing circuit. The key feature of 
stochastic SNN is its probabilistic bit generation mechanism, 
where the logic high and low states are determined by a 
sigmoid probability function based on the input code. 

To implement the stochastic core circuit shown in Fig. 1, 
the input signals were designed in a digital format as 
RCODE<4:0> and LCODE<4:0>. These input values are 
applied to the gates of PMOS transistors forming the Left 
wing and Right wing. This configuration determines the 
current flowing through the transistors on the Left and Right 
sides, which is then supplied to the cross-coupled inverter. 
Consequently, the inverter’s output nodes, Output A (OA) 
and Output B (OB), are determined based on the current 
difference between the Left and Right sides, where one node 
becomes high and the other low. 

Using this probabilistic mechanism, the stochastic core 
circuit was employed as the neuron of the spiking neural 
network, generating spikes based on the input values. Unlike 
the commonly used Integration-and-Fire (IF) neurons in 
other spiking neural networks, this design does not require 
capacitors for charge storage, enabling low-power operation. 
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(a) 

 

 
(b) 

 

Fig. 1. Stochastic core circuit (a) schematic and (b) layout. 
 

 
 

Fig. 2. Timing diagram of output A/B based on input signals EN/RD. 
 

  The simulation results show that, based on the Enable (EN) 
and Read (RD) signals, spikes are generated with a sigmoid 
probability according to the input code, as illustrated in Fig.2. 
The input code represents the difference between RCODE 
and LCODE. When all right-wing transistors corresponding  

 
to RCODE are turned on and all left-wing transistors 
corresponding to LCODE are turned off, the configuration is 
11111₂ - 00000₂, which corresponds to an input code of 31. 
In this case, all 1000 spike events occur at node A, resulting 
in a spike probability of 100%. Conversely, when the 
configuration is 00000₂ - 11111₂, corresponding to an input 
code of -31, all 1000 spike events occur at node B, yielding 
a spike probability of 0%. 

The measurement results, as shown in Fig.3, confirm that 
the number of generated spikes varies according to the input 
code. Fig.3 (a) presents an oscilloscope capture of the spike 
events when the input code is -31, demonstrating a near 0% 
spike probability. In contrast, Fig.3 (b) shows the 
oscilloscope capture when the input code is 31, where the 
output spikes occur with nearly 100% probability. The 
number of output spikes was measured by sweeping the 
input code from -31 to 31 while applying 1000 EN signals. 

 

 
(a) 

 

(b) 

Fig. 3. Measurement of spike generation result according to input code (a) 
Input code = -31 = 0 % (b) Input code = 31 = 100 %. 

 
In the simulation results shown in Fig. 4(a), spikes are 

generated based on a sigmoid-shaped probability. The 
measurement results in Fig. 4(b) similarly demonstrate that 
spikes are generated with a nonlinear probability. The supply 
voltage (VDD) was set to 1.15 V, and to compensate for the 
increased VDD, a high signal was applied to the gate of the 
lower NMOS transistor using the NSIZE code. 

The measurement results indicate that when the NSIZE 
code is fully high (111₂), the observed spike generation 
closely matches the simulation results. 
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(a) 

 
(b) 

Fig. 4. Spike generation probability according to the stochastic input 
neuron's code (a) Cadence simulation result (b) Chip measurement results. 
 

 
Fig. 5. 9×10 array architecture. 
 

B. 9×10 Array Architecture  

For the pattern classification simulation, the array consists 
of 9 input neurons, 10 output neurons, and 90 one-bit binary 
SRAM synapses, as shown in Fig.5. Spikes generated by the 
input neurons are multiplied by the synaptic weights and 
transmitted to the spike counter. The counter counts the 
number of spikes occurring in each column and forwards this 
information to the modulator. The modulator converts the 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. (a) 10 types of input patterns, (b) Pattern classification simulation 
input scheme, and (c) Simulation result of inference pattern 1.   
 
spike count into a format suitable for input to the output 
neurons. 

In the output neurons, the stochastic core circuit generates 
spikes with a certain probability. The classification follows a 
rate coding approach, where the output neuron that produces 
the highest number of spikes is considered the correct 
result.[5],[6],[7] 

Ⅲ. EVALUATION 

A. Pattern classification simulation 

For the array simulation, ten arbitrary patterns were 
defined, as shown in Fig.6 (a), and each was matched to one 
of the ten output neurons. The 3×3-sized patterns were 
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applied to the nine input neurons. The weights were 
determined through MATLAB simulations, and inference 
simulations were conducted using the Cadence tool. 

The results from the Cadence simulation, as shown in 
Fig.6 (c), confirm that the output neuron corresponding to 
pattern 1 generates the highest number of spikes, 
demonstrating successful pattern matching. 

Based on the experimentally measured stochastic core 
probability graph, the MATLAB simulation results confirm 
the expected behavior, as shown in Fig.7. The measured 
spike generation probabilities were incorporated into the 
MATLAB code to simulate the stochastic spike generation 
process. 

The spike generation probability values used in the 
simulation correspond to the average measured values when 
NS = 111. 

 

 
Fig. 7. Pattern classification simulation result. 

 
B. Power Consumption 

Power consumption simulations were conducted based on 
200 RD spikes, a core VDD of 1.15 V, and a peripheral 
circuit VDD of 0.9 V. The stochastic core consumes 3.36 µW 
of power, and since it is included in 9 input neurons and 10 
output neurons, the total power consumption amounts to 
63.84 µW. The modulator connected to each output neuron 
consumes a maximum of 2.58 µW per unit, while each pulse 
counter consumes a maximum of 16.51 µW, resulting in a 
total power consumption of 190.9 µW ( 2.58 × 10 +
16.51 × 10). The timing controller consumes 669.1 nW. In 
the synapse array, each AND gate operation, which 
multiplies the stored SRAM value and the input spike, 
consumes 105.7 nW, leading to a total synapse array power 
consumption of 9.5 µW. Consequently, the total power 
consumption during the inference process is 264.24 µW. 

During inference, 90 synapses perform multiplication 
operations, and 10 output neuron pulse counters perform 
addition operations. As a result, the system achieves an 
energy efficiency of 60.55 TOPS/W ((90+10)×160 𝑀𝑀𝑀𝑀𝑀𝑀

264.24 µ𝑊𝑊
). 

As shown in Table Ⅰ, the comparison with previous studies 
confirms that using stochastic neurons achieves higher 
energy efficiency compared to LIF SNN. Additionally, the 
use of SRAM enables fabrication with standard CMOS 
processes, allowing for low-cost manufacturing. Despite 

employing a smaller technology node compared to reference 
[4], our work exhibits lower energy efficiency (TOPS/W). 
This is attributed to utilizing a core voltage of 1.15 V rather 
than 0.9 V, and targeting a smaller-scale 9×10 array for basic 
pattern classification, as opposed to the 784×400×10 array 
designed for MNIST classification in reference [4]. 

 
TABLE I. Comparison of proposed method with state-of-the-art  

 This 
work [4] [8] [9] [10] 

TOPS/W 
(Tech node) 

60.55 
(28 
nm) 

89.49 
(90 
nm) 

12.19 
(65 
nm) 

18.7 
(40 
nm) 

17.56 
(40 nm) 

Network size 9×10 784×4
00×10 

784×3
00×10 X X 

System 
configuration 

Stocha
stic 

SNN 

Stocha
stic 

SNN 

Stocha
stic 

SNN 
LIF LIF 

Synapse SRAM SRAM RRAM Flip-
Flops 

SOT-
MRAM 

Weight 
resolution 1bit 1bit 3bit 8bit 4bit 

CMOS-
compatible 

synapse 
○ ○ X ○ X 

 
IV. CONCLUSION  

 
This study fabricated an artificial neural network using 

stochastic spiking neurons and verified its operation through 
measurements. The stochastic neuron operates based on 
stochastic behavior, directly generating spikes without 
accumulating input values, enabling lower power 
consumption compared to conventional LIF or IF neurons. 

Through this approach, a high energy efficiency of 60.55 
TOPS/W was achieved. The proposed architecture aims to 
overcome the energy efficiency limitations caused by the 
von Neumann bottleneck and serves as a suitable hardware 
platform for next-generation AI applications. 

The current 9×10 single-layer array can be further 
developed into a more advanced array with higher accuracy 
and integration, offering the potential for enhanced 
performance and scalability. 
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