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Abstract - This paper presents an adaptive gate driver-

assisted continuously scalable-conversion-ratio (CSCR) 

switched-capacitor (SC) DC-DC converter. Gate-source voltage 

controller (GSVC) generates dynamic supply voltage to the gate 

driver adaptively according to the output voltage level of the 

converter. By adopting an adaptive gate driver to achieve soft 

charging between capacitor connections, the overall system 

generates a wide range of output with high power density and 

power conversion efficiency. The proposed converter generates 

an output range from 0.7 V to 1.8 V from an input voltage of 2.9 

V. The proposed converter achieves a peak PCE of 72%. The 

proposed converter is implemented in TSMC 180 nm BCD 

process, with a chip area of 3 mm x4 mm. 
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I. INTRODUCTION  

 

In recent years, Internet of Things (IoT) technologies have 

been advanced to perform multiple operations with limited 

hardware resources. To support the end nodes of IoT 

applications to achieve high performance, various multi-

core-based system-on-chip (SoC) designs have been 

introduced recently. However, to improve the battery 

lifetime of IoT nodes, the power management integrated 

circuit (PMIC) should provide a per-core dynamic voltage 

and frequency scaling (DVFS) scheme [1] to improve the 

energy efficiency of digital loads. 

Switched capacitor (SC) DC-DC converters have been 

widely studied due to their compatibility with on-chip 

applications. Although these SC converters require more 

complex hardware designs to provide a wide output voltage 

(VOUT) range, the converters achieve higher power density 

than inductor-based converters and higher PCE than LDO 

regulators [2]-[3]. Therefore, a wide VOUT switched capacitor 

(SC) converter is a key component in the implementation of 

battery-powered IoT nodes for small form factors and long 

battery lifetime. 

 

 

II. EXPERIMENTS 
 

A. Prior Works 
 

Recently, continuously scalable-conversion-ratio (CSCR) 

SC topologies have been proposed to overcome the 

discontinuity of VCR [4]-[9]. Compared with other hybrid 

buck-boost converters, these converters perform soft 

charging between flying capacitors (Ccores) by changing the 

hardware connections between Ccores in each phase. 

Therefore, the CSCR SC converters have multiple SC cores 

that perform interleaved charge-sharing operations. Fig. 1 

shows the hardware connections of the single Ccore of 

conventional CSCR SC converters. In the design of CSCR 

SC converters, the hardware connection sequences between 

the Ccores determine the power conversion operation of the 

CSCR SC converter [4]. For example, the SC core in Fig. 

1(a) performs step-down conversion and the SC core in Fig. 

1(b) performs step-up conversion. These CSCR SC 
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(a) 

(b) 
 

Fig. 1. Voltage versus phase diagram topology of (a) conventional single-
output step-down CSCR SC converter [4] and (b) conventional single-output 

step-up CSCR SC converter [5]. 
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converters perform power conversion operations with low 

charge-sharing losses and bottom plate losses. However, 

increasing the number of SC core cells results in larger 

hardware areas for the controller and gate drivers, as well as 

increased hardware complexity. And reducing the number of 

SC core cells results in an increase in charge-sharing losses 

due to hard-charging between the Ccores. 

 

B. Top Architecture 

 

Fig. 2 shows the top block diagram of the proposed 

adaptive gate driver-assisted CSCR SC converter. The 

proposed converter adopts a CSCR SC power stage 

consisting of the number of nine SC core cells, and each SC 

core cell consists of five switches at the top node of Ccore 

(three switches connected to the top flying nodes (VT1-3) and 

switches for VOUT and VIN) and three switches at the bottom 

node of Ccore (one switch connected to the bottom flying 

node (VB1) and switches for VOUT and VSS). The output of a 

dynamic comparator (CMPOUT) triggers the on-time signal 

(TON) by comparing VOUT with its reference voltage (VREF). 

VOUT is regulated by controlling the off-time between each 

TON pulse, the pulse width of which is determined by the 

digital controller delay line (DCDL). The five AND gates 

sequentially distribute the TON signal into 18 phase signals 

(Φ[1:18]), which generate signals to drive the power stage 

through the decoder. The gate-source voltage controller 

(GSVC) adaptively supplies the gate drivers with voltage 

(VDD, GND) by monitoring VREF and comparing it with 

reference voltages (VREF,H and VREF,L).  

 

C. GSVC Circuit 

 

Fig. 3(a) shows the design target of the GSVC circuit. The 

CSCR SC topology exhibits a flat power conversion 

efficiency (PCE) curve, which is achieved by suppressing 

hard charging through gradual charge sharing between Ccores. 

However, the deviation of the output voltage from the 

optimum voltage (Vopt) at which the flying nodes (VT1-2, VB1-

2) are uniformly distributed (as shown in Fig. 3(b)) causes 

the loss of charge sharing through hard charging operation, 

resulting in a decrease in PCE in the practical 

implementation of the CSCR SC topology. The case where 

VOUT is regulated at the upper level of Vopt, the voltage 

difference of the bottom flying nodes (ΔVB) is increased as 

shown in Fig. 3(c), resulting in charge-sharing loss at the 

bottom node connection between Ccores. Regulating VOUT at 

the lower level of Vopt increases the voltage difference (ΔVT) 

between the top flying nodes as shown in Fig. 3(d), resulting 

in charge-sharing loss at the top node connection. 

Fig. 4 shows the circuit implementation of the GSVC. The 

GSVC employs two static comparators to compare VREF and 

VREF,H,L, which are divided by resistors into VH and VL signals, 

respectively. When the VREF deviates from the voltage range 

of VH and VL, the activate signal (ACT) is generated. The 
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Fig. 2. Top block diagram of the proposed adaptive gate driver assisted 
CSCR SC converter. 
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Fig. 3. Design target of GSVC for the wide output voltage range (a), the 
voltage versus phase diagram topology of optimum output voltage (b), 
the upper voltage level of Vopt (c), and the lower voltage level of Vopt (d).  
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ACT signal transits through a latch when TON is high, 

preventing abnormal switching operation. Based on the ACT 

signal, the supply voltage of the switch drivers is set to either 

VDD or VDD,GD. The gate driver voltage level reduces the peak 

hard-charging current between Ccores (ICcore) by lowering the 

gate-source voltage of the switch, which increases its on-

resistance. 

Fig. 5 shows the simulation results of the internal voltage 

waveforms of the proposed converter. The three top flying 

nodes and one bottom flying node toggle voltages evenly, 

facilitated by charge sharing across the nine cores. 

Consequently, the Ccores of the CSCR cores swing as follows: 

the top plate nodes swing from VOUT to VIN through the flying 

nodes, while the bottom flying nodes swing from VSS to VOUT. 

As a result, the flying nodes stepwise swing from VSS to VIN 

via the flying nodes. 

 

III. RESULTS AND DISCUSSION 

 

Fig. 6 shows simulated load transient waveforms of the 

converter. During the load transient from 10 mA to 90 mA, 

the output voltage is regulated by off-time modulation, 

tracking the reference voltage. Fig. 7 shows the simulated 

PCE results of the proposed converter. The converter covers 

an output voltage range of 0.7 V to 1.8 V from VIN of 2.9 V 

as shown in Fig. 7(a). Additionally, the converter supplies 

IOUT ranging from 1.5 mA to 500 mA at VOUT of 1.5 V and 

VIN of 2.9 V as shown in Fig. 7(b). 

Fig. 8 shows the chip layout of the proposed converter. 

The converter is fabricated using a 180 nm BCD process, 

with a chip area of 3 mm x 4 mm. For the high load current, 

the size of the power switches was designed large. It is 

designed that the power switches are placed along the pad 

lines to reduce the length of the power metal lines and 

improve the PCE. The control circuits are placed at the 

center of the chip so that the control signals for the power 

stages travel through the short route.  
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Fig. 4. (a) Circuit implementation of the gate-source voltage controller and 

(b) operation of the proposed converter. 
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Fig. 5. Simulated waveforms of the internal nodes of the converter. 
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Fig. 6. Simulated IOUT load transient waveforms. 
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Fig. 7. Simulated power conversion efficiency plots (a) with respect to VOUT 
at VIN = 2.9 V and ROUT = 5Ω, and (b) with respect to IOUT at VIN = 2.9 V and 

VOUT = 1.5 V. 

. 
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TABLE I. Comparison with state-of-the-art SC converters. 

Process 65nm CMOS

[2]

180nm BCD

[3]

28nm CMOS

[4]

65nm CMOS

[8]

VIN (V)

VOUT (V)

# of VCR

1.5

0.18–1.19

4

2.5–5

0.1–3.67

9

2

0–2.22

CSCR

0.4–2.5

0.4–2

CSCR

CFLY,total (nF)
400

(Off-chip)
49.23

(MOS, MIM)
0.458

(MOS, MOM)
19.8

(MOS, MOM)

IOUT,max (mA) 400 362* 3*

PCEmax [%] 93.7 87 93

19.8*

90

180nm BCD

This Work

2.9–3

0.7–1.8

CSCR

300 
(Off-chip)

500

72

* Estimated based on the study  
 

IV. CONCLUSION 

 

Table I presents a performance comparison of the 

conventional step-down SC converters with a wide VOUT 

range. This paper illustrated the adaptive gate driver-assisted 

CSCR SC converter. The power stage is composed of nine 

CSCR core cells with three top-flying nodes and one bottom-

flying node. The proposed GSVC reduces the capacitor 

current modulating VGS of power switches, so the energy loss 

mechanism between the Ccore connections is changed from 

hard charging to soft charging-based operation. As a result, 

the converter achieves a wide output voltage range beyond 

the non-optimal VCR range. 
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