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Abstract - In this paper, we present a hardware-software co-
design methodology for analog compute-in-memory (CIM)
accelerators with 1-bit sense amplifiers (SAs). While CIM
macro using 1-bit SAs achieves high energy efficiency by
eliminating multi-bit analog-to-digital converters (ADCs), it
faces two key challenges: limitations in BNN layer size and the
impact of SA random noise. Through neural network splitting,
which divides layers into sub-blocks matching the size of the
CIM macro rows, the BNN model fits the CIM macro while
preserving accuracy. Additionally, the SA output probability
model is obtained through measurements and replaces the
binarization function of BNN, incorporating SA random noise
into the BNN training process. Using these two approaches, we
develop a framework to retrain BNNs tailored to the CIM
accelerator using 1-bit SAs. The prototype 128x128 CIM
accelerator fabricated in 28 nm technology achieves 97.81%
MNIST inference accuracy and 12.6x reduction in readout
energy compared to the prior work using 5-bit ADCs.

Keywords— Compute-in-memory (CIM), hardware-
software co-design, analog computing, binary neural
network (BNN)

1. INTRODUCTION

The development of deep neural networks (DNNs) has
revolutionized various workloads with the high inference
accuracies of the models. The size and computational
complexity of models have increased significantly with the
demand of complicated tasks. The digital accelerators
utilizing parallelism have been developed for the DNN
workloads which is dominated by massive amounts of
matrix-vector multiplications (MVMs). The data transfer
between computing unit and memory, however, significantly
limits the throughput and energy efficiency of the
accelerators [1]. To reduce the memory access, prior works
optimized dataflow to maximize data reuse and compressed
the model using quantization [2], [3].

To this end, the analog compute-in-memory (CIM) which
integrates computation and memory has been proposed [4].
As shown in Fig. 1, the weights are stored in the bit cells of
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Fig. 1. The architecture of CIM macro with multi-bit ADC.

the CIM macro, and multiplications with the input
activations fed to the word lines (WLs) are performed. The
multiplication outputs of all the cells in the same column are
accumulated in analog domain on the bit line (BL), which
enables parallel access of all rows. CIM achieved high
energy efficiency with this fully parallel multiply-
accumulate (MAC) using analog computing. Meanwhile, the
multi-bit analog-to-digital converter (ADC) which converts
the accumulated analog voltage/current to digital output
consumes significant energy, and this limits the gain
obtained from the energy efficient analog computing. To
reduce the overhead of output readout, low precision ADCs
(e.g. 5-bit ADC) are used by quantizing the partial sum
results. To further increase the energy efficiency of CIM, the
multi-bit ADC can be replaced with the 1-bit sense amplifier
(SA) by running the binary neural network (BNN). The
accumulated results can be directly quantized to the 1-bit
output activations of BNN with the 1-bit SA.

However, there are two challenges in mapping the BNN
to the CIM macro using 1-bit SA as shown in Fig. 2. 1) The
entire MAC operation required for computing a single output
activation has to be performed in each column. In other
words, the number of rows should be larger than the number
of weights for a single output. Otherwise, the multi-bit
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Fig. 2. The architecture of CIM macro with 1-bit SA and challenges in
mapping the BNN to the CIM macro.

partial sums should be computed multiple times, and it
requires multi-bit ADC. The limited number of rows in CIM
macro due to the signal-to-noise ratio and readout delay
makes this challenging. 2) The random noise of SA induces
error during the 1-bit quantization of the output activation,
resulting in inference accuracy drop. The modification of the
BNN, therefore, is required to address these challenges.

This work presents a hardware-software co-design for
analog CIM accelerators using 1-bit SAs. The BNN is
retrained using neural network splitting and SA output
probability model. The prototype chip achieves measured
test accuracy of 97.81% for MNIST dataset.

The remainder of this paper is organized as follows.
Section II presents two methodologies of the hardware-
software co-design for the analog CIM accelerator using 1-
bit SAs. Section III shows the measurement results of the
prototype chip. Section IV concludes this work.

Il. PROPOSED HARDWARE-SOFTWARE CO-DESIGN FOR
ANALOG CIM ACCELERATOR USING 1-BIT SENSE AMPLIFIERS

A. Neural network splitting

BNN s use 1-bit representations for both input activations
and weights. Output activations are computed by applying 1-
bit quantization to the MAC results of inputs and weights, as
described by the following equation:
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OUT = Binarize(X¥-,; Wi IN,) (1)

Here, N denotes the number of inputs and weights required
to compute the output. The conventional CIM macro can
compute outputs even when N exceeds the number of rows
in the macro by using multi-bit ADCs to iteratively compute
partial sums. In contrast, the CIM macro with 1-bit SAs
directly execute the Binarize() function in equation (1), as
shown in Fig. 3. In this design, the number of rows should
be larger than N. In other words, it is required that all MAC
operations for the output is completed in a single column of
the CIM macro. However, due to challenges such as SNR
degradation and readout delay, analog CIM macros are
typically designed with a limited row count, often in the
hundreds [4]. Meanwhile, the weight vector size, N, of the
simplest BNN model for MNIST is 2048, which exceeds the
typical number of rows in CIM macro. This mismatch limits
the direct mapping of conventional BNNs to CIM macro
with 1-bit SAs.

To overcome this limitation, we adopt the input splitting
technique proposed in [5] to rebuild the BNN. As shown in
Fig. 4, the BNN layer is divided into multiple sub-blocks,
each with a weight size matching the number of rows in the
CIM macro. Intermediate activations are added between
input activations and output activations. This enables each
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TABLE 1. The baseline BNN MLP for MNIST dataset and the
reconstructed BNN applying input splitting.

Sub-block size Layer
Baseline 748-2048-2048-2048
64 748-(32x64)-(32x64)-2048
128 748-(16x128)-(16x128)-2048
256 748-(8x256)-(8x256)-2048
512 748-(4x512)-(4x512)-2048

TABLE 1I. Test inference accuracy of the baseline BNN and the
reconstructed BNNs for MNIST dataset.

Sub-block size Test Accuracy (%0)
Baseline 98.25
64 97.92
128 98.02
256 98.12
512 98.21

sub-block to be mapped onto a CIM macro. To maintain the
network complexity, weights between intermediate and
output activations are fixed to 1, as described in [5]. The
reconstructed BNN model is then retrained.

The neural network splitting achieves high accuracy for a
wide range of row counts which can vary depending on the
design constraints. For the baseline model, we used the BNN
MLP for MNIST from [6]. The model is reconstructed for
four typical numbers of CIM rows (64, 128, 256, 512) as
shown in Table 1. The reconstructed models are trained and
Table 2 shows their inference accuracy. For all cases, the
maximum accuracy drop was 0.33%, demonstrating the
feasibility of applying input splitting to CIM macros.

B. Sense amplifier output probability modeling

As shown in Fig. 3, the SA performs 1-bit quantization of
the MAC operation results. Conventional BNNs utilize
deterministic binarization defined by the Sign() function:

+1, x>0

sign() ={" " 2, @

However, due to the influence of random noise, the SA does
not perfectly replicate the behavior of Sign(). Therefore,
running the conventional BNN directly on the CIM
accelerator results in substantial accuracy drop, depending
on the magnitude of the random noise.

The 1-bit SA used in the CIM macro is implemented with
a StrongARM latch, as shown in Fig. 5. This design uses a
clocked differential pair, offering high sensitivity and low
static power consumption [7]. The SA takes the analog BL
voltage of the MAC result as its input and outputs a 1-bit
digital value. However, during this binarization process,
random noise sources, such as thermal noise, cause the SA
output to exhibit a probabilistic distribution near the
threshold (MAC value of 0).

The top plot of Fig. 6 shows the measured output
probabilities of the prototype chip’s 128 column SAs as a
function of the MAC value. By averaging them, the SA
output of the CIM accelerator can be modeled as a
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Fig. 5. The schematic of the 1-bit sense amplifier.
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Fig. 6. The measured output probabilities of 128 1-hit sense amplifiers and
1-bit sense amplifier output probability model.

probabilistic distribution with a variation of ongise = 3.84
digital codes, as shown in Fig. 6 (bottom). Based on this
probability model, a new binarization function can be
defined:

+1, with probability p(x)

Binarize(x) = {—1, with probability 1 — p(x)

3
Here, p(x) represents the SA output probability model. By
replacing the Sign() in the BNN with this modeled
binarization function, Binarize(), the effect of the SA random
noise can be incorporated into the training process. During
training, the straight-through estimator with hard tanh was
applied to the backpropagation of the binarization layer, as
in conventional BNNs. This method is performed on a per-
chip basis, since the SA output probability model p(x) varies
from chip to chip due to process variations.

The measurement results of the prototype analog CIM
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Fig. 7 shows the measurement framework for evaluating
the BNN inference accuracy using the proposed hardware-
software co-design. The framework consists of the following
steps. First, the SA output is measured using the
measurement system consisting of a host PC and FPGA.
Random weights and inputs are fed to the CIM accelerator,
and the outputs of 128 SAs are read as the results of MAC
operations. The SA output probability model is derived from
the read output data. Second, CIM-aware BNN training is
performed. The baseline BNN is reconstructed through
neural network splitting and the SA output probability model,
and the reconstructed model is trained on GPUs. Finally, the
inference accuracy of the trained BNN model is measured on
the CIM accelerator using the test dataset.

We trained the baseline BNN MLP for MNIST from
Section 11 using this framework and measured the inference
accuracy on 10k test images. Fig. 8 shows the comparison
between the inference accuracy of the baseline BNN model
and the CIM accelerator. By reconstructing and retraining
the BNN considering the characteristics of the CIM
hardware, a high accuracy of 97.81% on the CIM accelerator
is achieved, only 0.21% lower than the baseline.

Additionally, replacing multi-bit ADCs with 1-bit SAs
significantly reduces the energy consumption of the output
readout. As shown in Fig. 9, our prototype chip consumes
12.6 times less energy for A/D conversion compared to the
CIM macro using 5-bit ADCs [8].
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1V. CONCLUSION

This paper presents a hardware-software co-design for
analog CIM accelerators using 1-bit SAs. To address the
significant power overhead of multi-bit ADCs in
conventional CIM accelerators, 1-bit SA-based BNN CIM
accelerators have been proposed. However, two major
challenges, limitations in BNN layer sizes and the SA
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random noise, hinder the mapping of BNNs onto the CIM
accelerators. To overcome these issues, we utilize two key
techniques: neural network splitting and SA output
probability modeling. The neural network splitting
restructures BNN layers into sub-blocks matching the size of
the CIM macro, enabling compatibility with hardware
constraints while maintaining baseline-level accuracy
through retraining. Additionally, SA output probabilities are
measured and modeled, and this model is incorporated into
the BNN to recover the accuracy drop caused by the SA
random noise. A prototype CIM accelerator fabricated in
28nm CMOS technology demonstrates our framework,
achieving 97.81% inference accuracy on the MNIST test
dataset and 12.6x reduction in readout energy compared to
the prior work.
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