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Abstract - This paper presents a temperature-and-voltage-
tolerant 2.5GHz 6-bit digital-to-time converter (DTC) with an
87-fs resolution. The capacitor-DAC (CDAC) based DTC can
achieve high resolution and linearity, but typical DTC
structures suffer from performance degradation due to
temperature and voltage variations. To address this issue, we
implement a replica feedback loop consisting of a regulated
constant-slope DTC, which effectively maintains the delay of
the DTC even as temperature and voltage conditions fluctuate.
Additionally, an on-chip histogram counter accurately
measures on-chip delays. The proposed DTC in this paper is
fabricated in a 28-nm CMOS process, with the core occupying
an area of 0.0129 mm?>. It operates at 2.5 GHz with a 0.9 V
supply voltage, consuming only 0.82 mW. Measured results
demonstrate that the full-scale range changes for 125 °C
temperature variation and for 200mV supply variation are
reduced by 7.2x and 1.9x, respectively.

Keywords—Digital-to-time converter (DTC), capacitor-DAC
(CDAC), replica feedback loop

1. INTRODUCTION

A digital-to-time converter (DTC) is utilized in
applications such as a fractional-N all-digital PLL, a clock-
data recovery (CDR) in the serial-link receiver, and a time-
interleaved ADC (TIADC). DTCs can be implemented in
many different ways, but when fine resolution below gate
delay is required, a signal-superposition-based phase
interpolator DTC [1-3] or a switched-capacitor based DTC
[4-7] is commonly used. In particular, the switched
capacitor-based DTC utilizing constant-slope discharging
in [6] demonstrated excellent linearity with fine resolution
by adjusting the initial voltage on a local capacitor using a
linear capacitor-DAC (CDAC) and charge sharing. A
drawback, however, is that the full-scale range of this DTC
is susceptible to supply and temperature because the
discharge current and the threshold comparator in [7] are
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Fig. 1. Block diagram of core and architecture of the proposed DTC.

subject to supply and temperature variations.

In applications such as the timing-skew calibration in
TIADCs or the CDR in wireline receivers, it is critical to
keep the DTC’s delay constant over temperature or supply
variation. To address this challenge, this work proposes an
improved DTC in which a replica feedback loop regulates
the full-scale range of the DTC, thereby maintaining the
delay of the DTC over temperature and voltage variation.
Measured performance validates that the full-scale range
changes for 125°C temperature variation and for 200mV
supply variation reduce by 7.2x and 1.9x, respectively,
when compared to the case without using the proposed
technique.

The rest of this paper is organized as follows: In Section
I, the implementation of the proposed DTC, replica
feedback loop, and delay measurement circuit is discussed.
In Section III, measurement results are presented, and
Section IV concludes the paper.

1. DESIGN METHODOLOGY

A. Proposed DTC

The architecture of the proposed DTC is shown in Fig. 1.
The input clock (CLKIN) drives both the DTC core and the
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Fig. 2. The details of the replica feedback block and the corresponding timing diagram.

replica feedback block. The delay between the DTC output
(CLKprc) and the input clock (CLKix) is measured by the
histogram-based delay measurement unit. The DTC core is
a two cascaded regulated-constant-slope DTCs (RCS-
DTCs). The RCS-DTC consists of an input and output
buffer, a 6-bit CDAC, a ramp generator, and a threshold
comparator.

A key difference, when compared to the previous
constant-slope DTC in [7], is that the current-regulating
transistor Mcs is added in the discharge path of the ramp
generator, where the gate voltage V¢ of Mcs is driven by
the replica feedback block. The programmable delay is
realized in two steps: pre-charging the Vcap node and
discharging the Vramp node.

As illustrated in Fig. 1, during the pre-charging, the
transmission gate is on (EN=1) and the capacitors in CDAC
with D<k>=1 are reset with zero voltage while those with
D<k>=0 are pre-charged to Vpp. During the discharging,
the transmission gate is turned off and all CDAC inputs are
zeroed. The total charge is shared including newly activated
capacitors, creating a voltage drop A, at Vcap node which
is transferred to Vramp when the input clock is low. When
the input clock signal is high, Vramp is discharged from
Vbbb - A, where the discharging current is determined by
V.. Therefore, the delay depends both on the CDAC input
and V. One limitation of this approach is that the delay
programmability is applied only to the rising edge of the
output clock. In applications, where the pulse width should
be invariant to the digital input of the DTC (e.g., sampling
clock generation of high-speed TIADCs), this can be a
serious issue. To resolve this issue, our DTC core simply
uses two cascaded RCS-DTCs, each contributing the same
amount of delay for the edges to maintain a 50% duty cycle

15

at CLKprc.

B. Replica feedback loop structure

Fig. 2 reveals the details of the replica feedback block
along with the timing diagram. It consists of a replica RCS-
DTC (DTCrep), Which is nominally identical to the RCS-
DTC in the actual DTC (DTC3), a clock selector, a clock
demultiplexer, a charge pump, and a sampled loop filter
that generates Ve to close the feedback loop. The central
idea here is to create a self-referenced feedback loop such
that the time difference between minimum and maximum
delay, which is the full-scale of the DTCgep, is constant
over voltage or temperature variation, and the resulting Ve
is forwarded to the DTC;, being used with arbitrary input
Dprc<5:0>. To accomplish this goal, the DTCgep input
Drep<5:0> toggles between decimal 0 and 63 at every four
CLKi, cycles, and the output CLKconr is sent to the clock
demultiplexer where the CLKcont is routed to the “up”
pulse when Dgrep=63 and to “down” pulse when Dgrep=0.

The charge pump operates in three phases: In phase 1,
M2 and My are turned on with both “up” and “down” being
low. As current flows through dummy paths, CPoy remains
unchanged. In phase 2, My is turned on with “up” being
high. As a result, the current I, charges the loop-filter
capacitor C. and CPqy rises. In phase 3, M3 is turned on
with “down” being high, and the I, discharges C. so that
CPout drops. The role of the dummy path in phases 2 and 3
is to keep the I, and I, alive even when not being used.
With the dummy path, Von and Vyp stay nearly unchanged,
which reduces unwanted charge sharing that could cause
errors in Ve when transitioning from phase 1 to 3 and
from phase 1 to 2.
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Fig. 3. Simulation results of (a) Ve and (b) the full-scale of the DTC for
three different temperatures.

The actual output Ve is sampled at the beginning of
phase 1 when Vy is fully settled after charge-discharge
process is completed. When the loop is locked and Vi
reaches the final value, AV¢,=0 should hold, i.e., Iy Tan =
Ip - Tup. Therefore, by using ratioed currents for I, and Iy,
the full-scale of the DTC can be kept constant even when
the temperature or supply voltage changes. The simulated
waveforms at the top of Fig. 3 show the Vi and the full
scale of the DTC for three different temperatures when
1p/1,.=30pA/32pA is used. It is evident that the full-scale
delays converge to the same value with respective Vi
values.

In  practice, process-induced mismatches create
discrepancies between the DTCrep and DTC;, which can
degrade the ability to maintain a constant full-scale. To
address this issue, the sizes of M1 and Mcs in Fig.1 were
designed to be sufficiently large, minimizing the impact of
mismatches. Additionally, future designs could implement
a calibration block by connecting a transistor array in
parallel with the Mcs of DTC,, enabling fine-tuning to
further reduce mismatch effects.

Fig. 4. Architecture of the charge pump current source.
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Similarly, the full-scale of the DTC depends on the ratio
of Ip to I, making the Ip/l, ratio critical. Fig. 4 illustrates
the architecture of the charge pump current source. In this
design, the 1/l ratio is defined by the transistor size ratios,
specifically the ratios of M1:M2 and M3:M4. Because the
transistor sizes determine the 1p/l, ratio, it remains stable
against temperature variations, thereby ensuring the full-
scale stability of the DTC.

However, achieving the desired Iy/l, ratio can be
challenging due to mismatches between M1 and M2 or M3
and M4. Although not implemented in this study, Fig. 4
demonstrates how a calibration block could be incorporated
to address these mismatches. By performing a one-time
foreground calibration, the desired DTC full-scale can be
achieved.

C. On-chip delay measurement

Fig. 5 displays the delay measurement unit used in this
work, which is inspired by the code density test (CDT)
technique in [8]. An on-chip digitally-controlled oscillator
(DCO) generates an asynchronous clock (CLKpco), and the
delay is calculated by counting the total number of CLKpco
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Fig. 5. (a) Architecture, (b) simulation result of the delay measurement
unit, and (c) the corresponding timing diagram.
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TABLE I. Performance summary and comparison table

JSSC’ 16 [1] ASSCC’ 17 [7] CICC’ 18 [9] VLSI21 [10] This Work
. Constant slope Two step Regulated
Meth E t lat t sl
ethod dge interpolator (CDAC) Counter Constant slope Constant slope
Process (nm) 28 28 65 28 28
Supply (V) 1.1 1 1.05 0.9 0.8-0.1
Resolution (fs) 244 103 330 1020 87
Number of bits 11 5 7+10 9 6
DNL (fs) 305 36 1000 550 279
INL (fs) 1200 75 1650 700 294
Range (ps) 500 32 5310 530 5.6
R PVT 1t T
ange Self-aligned VI Self-aligned Voltage Vi
Sensitivity Sensitive Insensitive Insensitive
19.8 0.015 10 0.036 .
Power (mw) @2GHz @A40MHz @100MHz @50MHz 041" @2.5GHz
FoM™ (f]) 23.8 8.5 31.07 0.95 8.17
FoM"=Power = INL/ (Freq * Range). “Only one RCS-DTC is considered
edges hitting the time between the edges of CLKi, and 125°C temperature change, respectively. Table |

CLKprc. To measure this, CLKpco edges are first sampled
by two flip-flops (DF1, DF2) clocked at CLKj, and
CLKpre, respectively, and then a clock synchronizer
composed of three flip-flops resamples the outputs Q; and
Q2to reduce potential metastability error. Since glitches in
the XOR gate output can introduce errors in D, a
resampling process is required to ensure stable operation.
The synchronized clocks are compared through the XOR
gate whose output toggles the 24-bit edge counter lcno. By
comparing the Degge and Dnir, normalized delay can be
computed. The simulated output shown in Fig. 5 confirms
that such a measurement can accurately estimate the delay
between CLK;, and CLKptc. When compared to the
measurement circuit in [8], our delay measurement does not
use the return-to-zero block because it needs to measure the
delay between only rising edges, not both edges.

I1l. MEASUREMENT RESULTS

The design is fabricated in a 28-nm CMOS process with
an active area of 0.0129 mm?, as illustrated in Fig. 6. As
shown in Fig. 7, the replica feedback, which includes a
replica RCS-DTC, consumes 1.64 mW when operating at
2.5 Gs/s. In practical applications such as TIADCs, the
power consumption from the replica loop is amortized
because it can be shared across many DTCs. The main
DTC consumes only 0.82 mW. The resolution and full
scale of the DTC, measured by the on-chip CDT, are 87-fs
and 5.6 ps, respectively. The peak DNL and INL are 279 fs
and 294 fs, respectively. The linearity degradation is
attributed to the nonlinearity of the on-chip binary CDAC,
which can be easily improved by using segmented CDAC.

Fig. 8 shows the measured full-scale variation versus
supply and temperature change. The graphs show that the
AFullscale/Fullscale is reduced from 24.47% to 12.63% for
a 200 mV supply change and from 45.21% to 6.32% for a
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summarizes the comparison with state-of-the-arts, showing
this work is the only >GHz DTC achieving sub-100 fs
resolution with PVT tolerance and superior power
efficiency.
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IV. CONCLUSION

This paper presents a 2.5 GHz 6-bit DTC achieving 87-fs
resolution with tolerance to temperature and voltage
variations. The proposed DTC architecture, consisting of a
regulated constant-slope DTC and a replica feedback loop,
effectively maintains the full-scale range. The replica
feedback system ensures stable operation by regulating the
discharge current through control voltage, significantly
reducing full scale variations from 24.47% to 12.63% for a
200 mV supply variation and from 45.21% to 6.32% for a
125°C temperature change. These results demonstrate the
efficiency of the proposed DTC, suggesting it could be
utilized in applications that require stable delay
performance over VT variations.
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