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A V-Band CMOS Frequency Doubler in 65 nm CMOS
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Abstract — This article introduces a high output power and
high conversion gain millimeter-wave CMOS frequency
doubler. The frequency doubler adopts the optimum transistor
size and gate bias voltage to achieve high output power, high
conversion gain and high efficiency. The measured results
demonstrate a peak conversion gain (CG) of 1.45 dB, a peak
DC-to- RF efficiency of 11.26 % and a saturated output power
of 5.65 dBm at 63 GHz. At the peak CG, the 3-dB bandwidth is
8.9 GHz from 57 to 65.9 GHz. The fundamental rejection is
larger than 10.75 dB from 57 to 66 GHz. The chip area,
including RF and DC pads, is 0.4 X 0.5 mm? in 65-nm CMOS
process. The power consumption is 12 mW at an input power
of 0 dBm.

Keywords: 60 GHz, CMOS, conversion gain, efficiency,
frequency doubler, fundamental rejection, millimeter-wave,
multiplier, output power, V-band.

I. INTRODUCTION

Wireless communication and sensing applications in the
millimeter-wave bands, which offer wide available
bandwidth, are emerging to meet the demand for high
performance and high speed. The transceivers operating in
the millimeter-wave band have achieved data rates over 10
Gb/s [1-4]. These transceivers require an oscillator to
generate local oscillator signals. However, silicon-based
fundamental voltage-controlled oscillator (VCO) in the
millimeter-wave band has difficulty in achieving a wide
tuning range, high output power and good phase noise as the
frequency increase. Compared to a 60 GHz fundamental
VCO, a 30 GHz VCO with a frequency doubler provides
greater transconductance and tank inductance with higher
capacitor quality factor under same DC power and device
size [5].

The frequency doublers have been implemented using a
variety of topologies [6]-[9]. The design of the frequency
doubler requires performances such as wide bandwidth,
second harmonic output power (Pout), DC-to-RF efficiency
(m), conversion gain (CG) and fundamental rejection (FR). A
transformer-based doubler with an output buffer [9] has
achieved a peak n of 19.5%, a CG of 0.8 dB and a saturated
power (Psa) of 5.7 dBm at 66 GHz. However, adding the
output buffer significantly increases the chip size and power
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Fig. 1. Schematic of the designed frequency doubler.

consumption. Similarly, the push-push VCO topology
showed a high peak n over 20% and a Py, larger than 8
dBm [6], [9]. However, both approaches require high input
power and large chip area.

In this study, we present the design of a millimeter-wave
frequency doubler operating at 56—67 GHz, achieving high
conversion gain and high output power within a small chip
area using a 65-nm CMOS process. The proposed frequency
doubler achieves a Py, of 5.65 dBm, a peak n of 11.26 % at
63 GHz. A peak conversion gain of 1.45 dB is achieved from
an input power of 0 dBm at 63 GHz. Section II describes the
architecture and implementation of the frequency doubler.
Section III presents the simulation and measurement results,
and conclusion is presented in section I'V.

II. CIRCUIT DESIGN

Fig. 1 depicts the schematic of the frequency doubler. The
input transformer (TF) is used to convert single-ended
signals to differential signals, which are then fed into the
transistors M1 and M2. The drains of M; and M, are
combined, where the output currents of M; and M, suppress
odd harmonics. L; and L, are used for the output matching
network for the second harmonic frequency rather than the
matching network with capacitor and inductor for robust
impedance matching. The balanced design achieves good
suppression of the fundamental leakage (FL) and the high
output power for second harmonic. The second harmonic of
the frequency doubler is obtained from the nonlinear
characteristics of M; and M,. To analyze the operation
principle of the NMOS transistor, we used the Taylor
expansions from [10]. The simplified drain currents of M,
and M, from the Taylor expansions can be expressed as
shown below:

. 1 1
ips = Ips + gmVin () + Egmzvin(t)z + ;gms\/m(’f)3 +, @
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Fig. 3. Simulated Ppc, Pour, and np at 31.5GHz with input power of 0 dBm.

Where Viy(t) is the input voltage and Ips, gm, gm2, and gm3 are
the DC current of the drain, the transconductance, the second
order derivative of ips with respect to Vin(t) and the third
order derivative of ips with respect to Vin(t), respectively.

Fig. 2 shows gm, gm> and gm3 versus gate voltage. As the
gate bias increases, the fundamental output continuously
increases, while the second harmonic and third harmonic
outputs degrade beyond certain voltages. In the simulation,
a gate voltage of 0.36 V gives the highest gm of 0.33 A/V2,
Additionally, the transistor size affects power consumption
(Ppc), CG and Pour. Smaller transistor size limits CG and
Pour, while large transistor size results in higher Ppc and
limited n.

Fig. 3 shows the simulation results of Pour, Ppc, and drain
efficiency (np). In this simulation, the transistor size for M,
and M, is chosen as 40 pm to achieve optimum efficiency
and Pour. At an input power of 0 dBm, a gate voltage of 0.3
V provides an optimal Pour of 0.95 dBm, but a low np of
14.1 %. Meanwhile, at a gate voltage of 0.2 V, the frequency
doubler shows an optimal np of 16.74 %. However, Pour is
0.13 dBm. To simultaneously obtain optimal Pour and np,
we chose a gate bias voltage of 0.25 V, which provides a Pour
of 0.74 dBm, and an np of 16.06 %. All the transformer,
inductors, interconnections, and capacitors are optimized
and designed using electromagnetic (EM) simulation.
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Fig. 4. Microphotograph of proposed frequency doubler.
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Fig. 5. Measurement set-up of (a) output power with a harmonic mixer and
(b) fundamental leakage (FL).

III. EXPERIMENTAL RESULTS

The proposed frequency doubler was implemented in a
65-nm CMOS technology. Fig. 4 shows the
microphotograph of the frequency doubler. The chip size,
including RF and DC pads, is 0.5 X 0.4 mm?, while the core
size without the pads is 0.295 X 0.17 mm?. The frequency
doubler consumes 12 mW from a supply voltage of 1 V. The
frequency doubler is measured on-wafer using GSG probes.

Fig. 5 shows the measurement set-up for Pour and
fundamental leakage (FL). The Pour, CG and FL were
measured using a signal generator and a spectrum analyzer.
All losses associated with the probe, cable and mixer were
de-embedded from the measurement results.

Fig. 6 depicts the simulated and measured Pour and FL.
The simulated and measured P, and saturated FL are shown
in Fig. 7. The measured P, is larger than 3.7 dBm from 57
to 66 GHz. The measured peak Ps, is 5.65 dBm at 63 GHz.
The measured FL is less than -8.6 dBm from 57 to 66 GHz.
Therefore, measured FR is larger than 12.75 dB from 57 to
66 GHz. The measured FL and FR are limited due to
imperfect balun performance of TF;, which has a phase error
of 22.9 © and an amplitude error of 3.8 dB in the simulation.
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Fig. 6. Simulated and measured Poyr and FL versus the input power at (a) 57
GHz, (b) 60 GHz, (c) 63 GHz and (d) 66 GHz.
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Fig. 7. Simulated and measured results of Py and FL versus input
frequency at an input power of 6dBm.
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Fig. 8. Simulated and measured CG versus output frequency at an input
power of 0 dBm.

The measurement results of Py, and FL are better than the
simulation results due to the larger DC power consumption
in the measurement and imperfect modeling of active and
passive components.

Fig. 8 illustrates the simulated and measured CG. The
measured maximum CG is 1.45 dB at 63 GHz, and the CG
is more than -1.6 dB from 57 to 66 GHz. The 3-dB
bandwidth of the CG is 8.9 GHz from 57 to 65.9 GHz.

Fig. 9 shows the measured CG and n versus input power.
At an input power of 0 dBm, the maximum CG is -0.5, 0.45,
1.45 and -1.55 dB at 57, 60, 63 and 66 GHz, respectively.
The peak n is 11.2%, 9.4%, 11.26% and 6.2 % at 57, 60, 63
and 66 GHz, respectively. At the input power of 0 dBm, the
nis 7.75%, 8.18%, 9.11% and 4.37 % at 57, 60, 63 and 66
GHz, respectively. The proposed doubler consumes 12 mW
and 26 mW at input power of 0 dBm and 7 dBm,
respectively, at 66 GHz.

Table I summarizes the performance the comparison with
state-of-the-arts. The proposed frequency doubler achieves
the highest CG of 1.45 dB at an input power of 0 dBm, high
Psat 0f 5.65 dBm and the smallest chip size of 0.2 mm?.

IV. CONCLUSION

In this letter, we present the V-band frequency doubler.
The optimum transistor size and gate bias voltage are studied
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Fig. 9. Measured CG and simulated/measured DC-to-RF efficiency (1)) versus input power at (a) 57 GHz, (b) 60 GHz, (c) 63 GHz and (d) 66 GHz.
TABLE I
Performance Comparison with Various V-band Frequency Doublers
Ref. Tech. Output P Voo BW. s P Peak “*FR CGpk Ar ez Poe
Buffer | (dBm) ) (GHz) (dBm) *n (%) (dB) (dB) (mm”) (mW)
This 65nm
work CMOS No -10~8 1 57-65.9 5.65 11.26 >10.8 1.45 0.2 12
65nm 0.6 8 222 >26 -3.2 12-15
[6] CMOS No 0~12 45.5-67 0.95
1 10.1 21.88 >33 -1.8 26-32
65nm -5.5~
[7] CMOS No -8~8 1 62-90 -1~2 9.7 >20 25 0.27 9-14
[8] 65nm Yes -10~7 1 55-77 5.7 19.5 >30 0.8 0.33 14
CMOS . . . .
*n (%) = Py, /(P +Ppc)*100  **FR : Fundamental rejection

to achieve high output power, high conversion gain and high
efficiency. Implemented in a 65-nm CMOS technology, the
frequency doubler achieves a Py 0of 5.65 dBm, a peak CG of
1.45 dB and peak n of 11.26 % at 63 GHz. The 3-dB CG
bandwidth is 8.9 GHz. At an input power of 0 dBm, Ppc is
12 mW from a supply voltage of 1 V.
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