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Abstract – A millimeter-wave down-converter employing an 
on-chip balun transformer with improved common-mode 
rejection ratio is presented for 5G direct-conversion receiver. 
The down-converter consists of a down-conversion mixer and 
local-oscillator (LO) buffer. The down-converter was 
implemented in a 65-nm CMOS process. It consumes a power 
of 13.7 mW from a 1-V supply voltage. It shows a gain greater 
than 11 dB, a noise figure of approximately 9 dB and a third-
order output intercept point higher than 13 dBm when LO 
input power is -10 dBm in the frequency ranges from 26.5 
GHz to 29.5 GHz. 
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I. INTRODUCTION

Due to the explosive increase in the amount of data that 
must be processed in a wireless environment, 5G wireless 
communication standards have been developed and the 5G 
wireless communication system is currently in use [1]. In 
the 5G wireless communication system, millimeter-wave 
(mmWave) band transceivers have been used to process 
Gbps data rates [2]. 

Dual-conversion single-quadrature architecture and 
direct-conversion architecture have been used to implement 
5G mmWave wireless communication systems [2], [3]. In 
general, the receiver linearity of these architectures is 
affected by the linearity of the down-conversion mixer in 
the receiver front end. Millimeter wave band circuit design 
requires a CMOS process with a cutoff frequency (fT) of 
several hundred GHz, which has been made by continuous 
scaling-down of the gate length in CMOS technology. 
Recent scaling-down CMOS process uses a power supply 
voltage of 1V or less. Therefore, it is necessary to design a 
down-conversion mixer without linearity deterioration in an 
environment where the power supply voltage is 
approximately 1V. The mixer circuit that can operate at low 
supply voltage uses an on-chip balun transformer-based 
circuit topology [4]. In bands below several GHz, the 
common-mode rejection ratio (CMRR) performance of the 
on-chip balun transformer is good because the parasitic 
capacitance effect of the on-chip balun transformer is small. 

However, the parasitic capacitance degrades the CMRR 
performance of the on-chip balun transformer in the 
millimeter wave band [5], [6]. The mmWave on-chip balun 
transformer can deteriorate the balancing characteristics of 
the differential output signal that is converted from the 
single-ended input signal by the transformer. This may 
cause RF performance such as conversion-gain degradation 
of the down-conversion mixer [5], [6]. 

In this paper, a 28-GHz down-converter employing an 
on-chip balun transformer with improved CMRR and DC 
offset adjusting load is proposed for 5G direct-conversion 
receiver. The down-converter has been implemented in a 65 
nm CMOS process and has high output-referred third-order 
intermodulation point (OIP3) at 1-V supply voltage. 

II. CIRCUIT DESIGN

Fig. 1 presents the block diagram of the presented 28 
GHz down-converter composed of a down-conversion 
mixer and an LO buffer for 5G direct conversion receivers. 
The RF input and LO input have single-ended 50-Ω 
terminations. The RF input frequencies are 27, 28, and 29 
GHz with a 3-dB bandwidth of 800 MHz, respectively. A 
measurement buffer is used for measurement of baseband 
output signal. An LO buffer is employed in order to drive 
the switching pair of the down-conversion mixer using the 
LO input signal with the input power of less than −5 dBm. 
The LO buffer is composed of a two-stage common source 
(CS) amplifier. 

Fig. 2 shows a simplified schematic of the proposed 
down-conversion mixer. The down-conversion mixer 
consists of a transconductance stage and a switching stage. 
In the conventional Gilbert mixer, the switching stage is 
stacked on the transconductance stage, making it difficult to 
achieve high linearity performance without using linearity 
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Fig. 1. Block diagram of the presented 28-GHz down-converter composed 
of a down-conversion mixer and LO buffer. 
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improvement techniques when the supply voltage is low. In 
this design, because a low supply voltage of 1-V is used, a 
topology in which the transconductance stage and 
switching stage are magnetically coupled with an on-chip 
transformer T1 is used instead of a stacked topology. 
Typically, the more current the transconductance stage 
consumes in the mmWave band, the better RF performance 
of the down-conversion mixer can be achieved. On the 
other hand, the more current switching stage consumes, the 
less efficient the switching operation is, thus deteriorating 
the performance of the down-conversion mixer. Therefore, 
since DC current value of the transconductance stage 
required to optimize the performance of the down-
conversion mixer operating in the mmWave band are 
different from that of switching stage, the overall mixer 
performance can be optimized by adjusting DC current of 
each stage in the presented down-conversion mixer of Fig. 
2. The transconductance stage is a CS amplifier. The input 
impedance Zin(jω) of the transconductance stage can be 
approximately expressed as 
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where Cgs and gm1 are the gate-to-source capacitance and 
transconductance of transistor M1, respectively [7]. To 
satisfy 50-Ω input impedance matching at the RF operating 
frequency, the design parameters in (1) are set so that the 
Zin(ω) value is 50-Ω. 

An on-chip balun transformer T1 was used at the output 
load of the transconductance stage to convert the single-
ended drain current of the transistor M1 into a differential 
input current signal of the double-balanced switching stage. 
The on-chip balun transformer with high CMRR can have 
good balancing characteristics of differential input current 
signal of the double-balanced switching stage. The parasitic 
capacitance between the primary winding and secondary 
winding of the on-chip transformer and the impedance ZR 
caused by the routed line from one node of the primary 
winding to the VDD PAD can deteriorate the balancing 
characteristics of the differential signal in mmWave 
frequency band [5], [6], [8]. Fig. 3(a) shows the simplified 

equivalent circuit of the on-chip balun transformer T1 for 
CMRR analysis. The condition for maximizing the CMRR 
of the on-chip balun transformer T1 was derived in [5], [8] 
as follows: 
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Since the impedance due to a routed line is usually 
inductive, additional capacitance CC is added to node A on 
one side of the primary winding to satisfy Equation (2), as 
shown in Fig. 3(b). 

The relationship between the output current igm of the 
transconductance stage and the input current isw of the 
switching stage is linear as follows; 

 
𝑖𝑖𝑠𝑠𝑠𝑠 ≃ 𝐺𝐺𝑐𝑐𝑖𝑖𝑔𝑔𝑔𝑔                 (3) 

 
where Gc is current gain [4]. Since the down-conversion 
mixer of Fig. 2 has a structure in which the 
transconductance stage and switching stage are not stacked 
and the current from the transconductance stage is 
transferred to the switching stage without distortion, the 
down-conversion mixer can be expected to have high 
linearity. 

The linearity and switching loss of a down-conversion 
mixer depend on the amplitude of the LO signal. Typically, 
mmWave down-conversion mixers require large LO drive 
signals to obtain high linearity and improve conversion 
gain of the down-conversion mixer [9]. The LO buffer 
consisting of a two-stage CS amplifier is employed to drive 
the switching stage of the down-conversion mixer. 

The performance of a direct-conversion receiver can be 
affected by output DC offset of a down-conversion mixer 
[3]. A DC offset voltage may occur at the output of the 
down-conversion mixer in Fig. 2 due to mismatch between 
switching transistors, load transistors, or load resistors. To 
compensate for the dc offset in the differential output, the 
size of the output load transistor of the down-conversion 
mixer was adjusted through 4-bit control, allowing the DC 
voltage in the range of 0 to 15 mV to be varied at one 
output of the mixer. 

Two single-ended source followers with high linearity 
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Fig. 2. Simplified schematic of the proposed down-conversion mixer. 
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Fig. 3. (a) Simplified equivalent circuit of on-chip balun transformer T1 for 
CMRR analysis, (b) on-chip balun transformer T1 with capacitance 
compensation for balancing characteristics improvement. Lp and Ls 
represent the self-inductances of the primary and secondary windings, 
respectively, M is the mutual inductance, and Cps is the parasitic 
capacitance between the primary and secondary windings [8]. 
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characteristics, which do not affect the linearity 
performance of the down-conversion mixer, are used as 
measurement buffer. The output impedance of each source 
follower was designed to be 50 ohm. 
 

III. EXPERIMENTAL RESULTS 
 

The mmWave down-converter composed of a down-
conversion mixer and an LO buffer was implemented in a 
65-nm CMOS process. Fig. 4 shows the chip 
microphotograph of the presented mmWave down-  
converter. The silicon area of the down-conversion mixer 
and LO buffer excluding PADs is 0.715 mm × 0.55 mm. 
The  mmWave down-converter was measured by on-wafer 

probing after attaching the down-converter chip to an 
external printed circuit board. The power consumption of 
the mmWave down-conversion mixer and LO buffer is 13.7 
mW and 10.1 mW from a 1-V supply voltage, respectively. 
For the measurement, −10 dBm of LO power was applied 
to the LO input of the LO buffer. 

Fig. 5 shows the measured return loss at the RF input, 
and LO input of the mmWave down-converter, respectively. 
The return loss at the RF input and LO input is less than 
−10 dB from 26.5 to 29.5 GHz. 

Fig. 6 shows the single-ended output spectrum of the 
down-converter when the two-tone RF input frequencies 

 
 
Fig. 6. Measured single-ended output spectrum of the proposed RF down-
conversion mixer. RF Input power was set to -30 dBm and total loss by 
cables and probe tips is approximately 1.5 dB. 
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Fig. 7. Measured gain versus LO input power. 
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Fig. 8. Measured OIP3 versus LO input power. 

 
Fig. 4. Chip microphotograph of the proposed RF down-converter. 
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Fig. 5. Measured |S11| at (a) RF input port, (b) LO input port. 
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are 28.1 GHz and 28.11 GHz, respectively, the LO input 
frequency is 28 GHz, and the RF input power is set to −30 
dBm. Because the total loss due to cables and probe tips in 
the measurement is 1.5 dB and the gain of the measurement 
buffer is −4 dB, the conversion gain of the down-
conversion mixer is approximately 11.1 dB at the 
differential output of the down-conversion mixer. 

As shown in Fig. 7 and Fig. 8, the measured conversion 
gain of the down-conversion mixer is larger than 11 dB and 
the measured OIP3 is more than 13 dBm when the LO 
input power is over −10 dBm. Fig. 9 shows the measured 
NF and input P1dB. 

Table I summarizes and compares the measured results 
of the proposed down-converter with those of other 
published mmWave down-converter. Because the proposed 
down-conversion mixer does not employ linearization 
techniques, it has lower linearity than the previously 
published mmWave down-conversion mixers which 
employ linearization techniques [10], [11]. As a result, the 
down-conversion mixer has a lower figure of merit (FOM) 
but comparable performances while using smaller LO input 
power compared with the previously published mmWave 
down-conversion mixers with linearization techniques. On 
the other hand, it has a higher FOM compared to the down-
conversion mixer [12] in which the linearization technique 
is not applied. 

 
 

IV. CONCLUSION 

A 28-GHz down-converter was implemented and 
proposed for 5G mmWave mobile applications. The 
proposed down-converter shows an excellent figure of 
merit (FOM) compared with previously published down-
converters. Therefore, the down-converter could be suitable 
for 5G mmWave direct-conversion receivers. 
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