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Abstract — A millimeter-wave down-converter employing an
on-chip balun transformer with improved common-mode
rejection ratio is presented for 5G direct-conversion receiver.
The down-converter consists of a down-conversion mixer and
local-oscillator (LLO) buffer. The down-converter was
implemented in a 65-nm CMOS process. It consumes a power
of 13.7 mW from a 1-V supply voltage. It shows a gain greater
than 11 dB, a noise figure of approximately 9 dB and a third-
order output intercept point higher than 13 dBm when LO
input power is -10 dBm in the frequency ranges from 26.5
GHz to 29.5 GHz.
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I. INTRODUCTION

Due to the explosive increase in the amount of data that
must be processed in a wireless environment, 5G wireless
communication standards have been developed and the 5G
wireless communication system is currently in use [1]. In
the 5G wireless communication system, millimeter-wave
(mmWave) band transceivers have been used to process
Gbps data rates [2].

Dual-conversion single-quadrature architecture and
direct-conversion architecture have been used to implement
5G mmWave wireless communication systems [2], [3]. In
general, the receiver linearity of these architectures is
affected by the linearity of the down-conversion mixer in
the receiver front end. Millimeter wave band circuit design
requires a CMOS process with a cutoff frequency (fr) of
several hundred GHz, which has been made by continuous
scaling-down of the gate length in CMOS technology.
Recent scaling-down CMOS process uses a power supply
voltage of 1V or less. Therefore, it is necessary to design a
down-conversion mixer without linearity deterioration in an
environment where the power supply voltage is
approximately 1V. The mixer circuit that can operate at low
supply voltage uses an on-chip balun transformer-based
circuit topology [4]. In bands below several GHz, the
common-mode rejection ratio (CMRR) performance of the
on-chip balun transformer is good because the parasitic
capacitance effect of the on-chip balun transformer is small.
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Fig. 1. Block diagram of the presented 28-GHz down-converter composed
of a down-conversion mixer and LO buffer.

However, the parasitic capacitance degrades the CMRR
performance of the on-chip balun transformer in the
millimeter wave band [5], [6]. The mmWave on-chip balun
transformer can deteriorate the balancing characteristics of
the differential output signal that is converted from the
single-ended input signal by the transformer. This may
cause RF performance such as conversion-gain degradation
of the down-conversion mixer [5], [6].

In this paper, a 28-GHz down-converter employing an
on-chip balun transformer with improved CMRR and DC
offset adjusting load is proposed for 5G direct-conversion
receiver. The down-converter has been implemented in a 65
nm CMOS process and has high output-referred third-order
intermodulation point (OIP3) at 1-V supply voltage.

II. CIRCUIT DESIGN

Fig. 1 presents the block diagram of the presented 28
GHz down-converter composed of a down-conversion
mixer and an LO buffer for 5G direct conversion receivers.
The RF input and LO input have single-ended 50-Q
terminations. The RF input frequencies are 27, 28, and 29
GHz with a 3-dB bandwidth of 800 MHz, respectively. A
measurement buffer is used for measurement of baseband
output signal. An LO buffer is employed in order to drive
the switching pair of the down-conversion mixer using the
LO input signal with the input power of less than —5 dBm.
The LO buffer is composed of a two-stage common source
(CS) amplifier.

Fig. 2 shows a simplified schematic of the proposed
down-conversion mixer. The down-conversion mixer
consists of a transconductance stage and a switching stage.
In the conventional Gilbert mixer, the switching stage is
stacked on the transconductance stage, making it difficult to
achieve high linearity performance without using linearity
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Fig. 2. Simplified schematic of the proposed down-conversion mixer.

improvement techniques when the supply voltage is low. In
this design, because a low supply voltage of 1-V is used, a
topology in which the transconductance stage and
switching stage are magnetically coupled with an on-chip
transformer T; is used instead of a stacked topology.
Typically, the more current the transconductance stage
consumes in the mmWave band, the better RF performance
of the down-conversion mixer can be achieved. On the
other hand, the more current switching stage consumes, the
less efficient the switching operation is, thus deteriorating
the performance of the down-conversion mixer. Therefore,
since DC current value of the transconductance stage
required to optimize the performance of the down-
conversion mixer operating in the mmWave band are
different from that of switching stage, the overall mixer
performance can be optimized by adjusting DC current of
each stage in the presented down-conversion mixer of Fig.
2. The transconductance stage is a CS amplifier. The input
impedance Zin(jw) of the transconductance stage can be
approximately expressed as
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where Cg and gm are the gate-to-source capacitance and
transconductance of transistor M;, respectively [7]. To
satisfy 50-Q input impedance matching at the RF operating
frequency, the design parameters in (1) are set so that the
Zin(w) value is 50-Q.

An on-chip balun transformer T; was used at the output
load of the transconductance stage to convert the single-
ended drain current of the transistor M; into a differential
input current signal of the double-balanced switching stage.
The on-chip balun transformer with high CMRR can have
good balancing characteristics of differential input current
signal of the double-balanced switching stage. The parasitic
capacitance between the primary winding and secondary
winding of the on-chip transformer and the impedance Zr
caused by the routed line from one node of the primary
winding to the VDD PAD can deteriorate the balancing
characteristics of the differential signal in mmWave
frequency band [5], [6], [8]. Fig. 3(a) shows the simplified
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Fig. 3. (a) Simplified equivalent circuit of on-chip balun transformer T, for
CMRR analysis, (b) on-chip balun transformer T, with capacitance
compensation for balancing characteristics improvement. L, and L
represent the self-inductances of the primary and secondary windings,
respectively, M is the mutual inductance, and C, is the parasitic
capacitance between the primary and secondary windings [8].

(b)

equivalent circuit of the on-chip balun transformer T; for
CMRR analysis. The condition for maximizing the CMRR
of the on-chip balun transformer T; was derived in [5], [8]
as follows:
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Since the impedance due to a routed line is usually
inductive, additional capacitance Cc is added to node A on
one side of the primary winding to satisfy Equation (2), as
shown in Fig. 3(b).

The relationship between the output current iz, of the
transconductance stage and the input current iy, of the
switching stage is linear as follows;

L CPS[LPLS—MJ LL

VA

isw = Gcigm (3)
where G. is current gain [4]. Since the down-conversion
mixer of Fig. 2 has a structure in which the
transconductance stage and switching stage are not stacked
and the current from the transconductance stage is
transferred to the switching stage without distortion, the
down-conversion mixer can be expected to have high
linearity.

The linearity and switching loss of a down-conversion
mixer depend on the amplitude of the LO signal. Typically,
mmWave down-conversion mixers require large LO drive
signals to obtain high linearity and improve conversion
gain of the down-conversion mixer [9]. The LO buffer
consisting of a two-stage CS amplifier is employed to drive
the switching stage of the down-conversion mixer.

The performance of a direct-conversion receiver can be
affected by output DC offset of a down-conversion mixer
[3]. A DC offset voltage may occur at the output of the
down-conversion mixer in Fig. 2 due to mismatch between
switching transistors, load transistors, or load resistors. To
compensate for the dc offset in the differential output, the
size of the output load transistor of the down-conversion
mixer was adjusted through 4-bit control, allowing the DC
voltage in the range of 0 to 15 mV to be varied at one
output of the mixer.

Two single-ended source followers with high linearity
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Fig. 4. Chip microphotograph of the proposed RF down-converter.
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Fig. 5. Measured [Sy;| at (a) RF input port, (b) LO input port.

characteristics, which do not affect the linearity
performance of the down-conversion mixer, are used as
measurement buffer. The output impedance of each source
follower was designed to be 50 ohm.

III. EXPERIMENTAL RESULTS

The mmWave down-converter composed of a down-
conversion mixer and an LO buffer was implemented in a
65-nm CMOS process. Fig. 4 shows the chip
microphotograph of the presented mmWave down-
converter. The silicon area of the down-conversion mixer
and LO buffer excluding PADs is 0.715 mm x 0.55 mm.
The mmWave down-converter was measured by on-wafer
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Fig. 6. Measured single-ended output spectrum of the proposed RF down-
conversion mixer. RF Input power was set to -30 dBm and total loss by
cables and probe tips is approximately 1.5 dB.
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Fig. 7. Measured gain versus LO input power.

16
15

S~ —— o

/u/'
/o—</o'
/

-_— =
N

-
N
NN

OIP3 (dBm)

-
=y

== Measurement
10 Simulation

I I
?12 1110 9 8 7 6 5 4 -3 2 A1
LO input power (dBm)

Fig. 8. Measured OIP3 versus LO input power.

probing after attaching the down-converter chip to an
external printed circuit board. The power consumption of
the mmWave down-conversion mixer and LO buffer is 13.7
mW and 10.1 mW from a 1-V supply voltage, respectively.
For the measurement, —10 dBm of LO power was applied
to the LO input of the LO buffer.

Fig. 5 shows the measured return loss at the RF input,
and LO input of the mmWave down-converter, respectively.
The return loss at the RF input and LO input is less than
—10 dB from 26.5 to 29.5 GHz.

Fig. 6 shows the single-ended output spectrum of the
down-converter when the two-tone RF input frequencies
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Table | MEASUREMENT SUMMARY AND COMPARISON OF PERFORMANCE

[10] [11] [12] This work
Operating frequency (GHz) 31 26.5-29.5 26-39 26.5-29.5
Conversion gain (dB) 34 10.1 3.87 (28 GHz) 11
OIP3 (dBm) 21.4 19.3 4.54 (28 GHz) 13.5
Linearization technique ? Yes Yes No No
NF (dB) 95 9.9 13.62 (28 GHz) 8.9
LO input power (dBm) 3 -7* 5 -10*
. 212@ 1.5V 11/21*@1V 9.75@ 1V 13.7/23.8"
Power consumption (Poc) (mW) (Mixer) (Mixer + LO buffer) (Mixer) (Mixer + LO buffer)
Technology 45 nm SOI CMOS 65 nm CMOS 65 nm CMOS 65 nm CMOS
Area 0.8 mm? 0.18/0.28* mm? 0.4 mm? 0.2/0.39* mm?
N .
FOM: [11] 25.5 24.7/12.9 0.37 6.77/3.9
@31 GHz @ 28 GHz @ 28 GHz @ 28 GHz
*Value including LO buffer, OIP3 = Gain + IIP3,
FOM(dB) = Gain[abs]- IIP3[m W]_ 1 - fIGHz]
P, [mW] (NF —1)[abs]
10 -5
IV. CONCLUSION
NF\ —_
o ———6 c% A 28-GHz down-converter was implemented and
. o proposed for 5G mmWave mobile applications. The
% o proposed down-converter shows an excellent figure of
g 8 7 i) merit (FOM) compared with previously published down-
= o o converters. Therefore, the down-converter could be suitable
7 \ 83 for 5G mmWave direct-conversion receivers.
Input P1dB =3
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Fig. 9. Measured NF and input P1dB.

are 28.1 GHz and 28.11 GHz, respectively, the LO input
frequency is 28 GHz, and the RF input power is set to —30
dBm. Because the total loss due to cables and probe tips in
the measurement is 1.5 dB and the gain of the measurement
buffer is —4 dB, the conversion gain of the down-
conversion mixer is approximately 11.1 dB at the
differential output of the down-conversion mixer.

As shown in Fig. 7 and Fig. 8, the measured conversion
gain of the down-conversion mixer is larger than 11 dB and
the measured OIP3 is more than 13 dBm when the LO
input power is over —10 dBm. Fig. 9 shows the measured
NF and input P1dB.

Table I summarizes and compares the measured results
of the proposed down-converter with those of other
published mmWave down-converter. Because the proposed
down-conversion mixer does not employ linearization
techniques, it has lower linearity than the previously
published mmWave down-conversion mixers which
employ linearization techniques [10], [11]. As a result, the
down-conversion mixer has a lower figure of merit (FOM)
but comparable performances while using smaller LO input
power compared with the previously published mmWave
down-conversion mixers with linearization techniques. On
the other hand, it has a higher FOM compared to the down-
conversion mixer [12] in which the linearization technique
is not applied.
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tool were supported by the IC Design Education Center.
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