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Abstract - The advancement of state-of-the-art technology has
dramatically impacted the field of Deep Neural Networks
(DNNs), especially Convolutional Neural Networks (CNNs). As
the demand for Al applications on mobile devices grows,
power-hungry GPUs are no longer viable for mobile Al
applications. Instead, there is a growing research trend towards
compact and low power Neural Processing Units (NPUs) to
solve current problems. This article presents an efficient
architecture of a CNN inference accelerator that is optimized
for AI applications on mobile devices. We propose two
architectural enhancements and two optimization methods to
improve the existing CNN accelerator [1]. To evaluate our
work, we implemented it on a Zynq UltraScale+ MPSoC ZCU
102 Evaluation Board and verified it with the YOLOvS-nano
model used for CNN object detection. Experimental results
show that we reduced resource utilization by 7.31% for LUTs,
22.29% for FFs, and 3.90% for DSPs. In our Vivado simulation,
we accelerated the inference time by 33.5%. With the reduced
resource usage described above, we have implemented an
accelerator with no loss of accuracy and better resource usage
and speed.

Keywords—Convolutional Neural Network, CNN inference
accelerator, Neural Processing Unit, YOLOv5-nano model

1. INTRODUCTION

A Deep Neural Network (DNN) is a complex neural
network with multiple layers and is one of the most popular
models used in the field of Artificial Intelligence (Al). In
recent years, with the advancement of AI, DNNs have
received growing attention in various fields and already
being utilized in various areas. Among the Al models that
utilize the DNN, Convolutional Neural Network (CNN) [2],
which has a structure that efficiently extracts features by
considering the spatial structure of the data and identifies
patterns through these features. CNNs are mainly used in
object detection [3][4], classification [5][6], segmentation
[718], and Natural Language Processing (NLP) [9][10].
While state-of-the-art DNN models employ a variation of
CNN, called transformer networks, CNNs are still
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considered as mainstream of DNN models.

As neural networks evolve, the number of parameters
increases, and the CNNs become deeper and more complex
requiring faster accelerator hardware and chips. For
example, ResNet-50 [11], developed by Microsoft Research,
has 50 layers and 25 million parameters. Inception v4 [12],
one of the CNN architectures developed by Google, has
approximately 42 million parameters. AlexNet [13], a deep
learning architecture for image classification that won the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, has eight layers and approximately 60
million parameters. VGG-16 [14], one of the CNN
architectures developed by the University of Oxford that
won second place in the 2014 ILSVRC competition, has 16
layers and approximately 138 million parameters. Due to
this massive number of parameters, how well the hardware
is optimized is becoming important.

As the demand for Al applications on mobile devices
increases, power-hungry GPUs are no longer suitable for
mobile Al applications. Instead, there is a growing research
trend towards compact and low-power Neural Processing
Units (NPUs). This work presents an efficient architecture
for a CNN accelerator aimed at low-power mobile NPUs
with compact on-chip memory.

The main contributions of this paper are as follows:

1) A format change for bundling activation data from the

DRAM to minimize on-chip memory loss.

2) A global input buffer and global output buffer to free

up on-chip memory space and flexibly manage data.

3) Minimizing the Post-Convolution Processing block

to substantially reduce the size of the block and
output buffer.

4) A dual buffer structure to reduce DRAM access

overhead and accelerate the speed.

The rest of this paper is organized as follows: Section |1
introduces the overall architecture of the proposed NPU,
including the first and second contributions briefly. Section
11 introduces the third and fourth contributions. Section 1V
presents the results of the RTL implementation and the
analysis of the experimental results. Finally, Section V
concludes this paper.

Il. OVERALL ARCHITECTURE

Fig. 1 illustrates the overall architecture of the proposed
NPU, which consists of a convolutional block, input buffer,
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Fig. 1. Overall Architecture of proposed NPU

output buffer, microcode controller and memory, and post
convolution processing blocks (Upsampling modules,
Element-Wise Adder modules, and Pooling modules). The
convolutional block, a central block of the proposed CNN
accelerator, consists of four convolution engines called
Diagonal Cyclic Arrays (DCAs), where the multiply and
accumulate operations on the activation data and weights are
calculated. At this point, we cannot store all the activation
data and weights needed for the convolution in the on-chip
memory of the NPU chip. Therefore, we employ a loop
optimization method [15][16] in the proposed accelerator
architecture. The loop optimization method includes loop
tiling [15] and loop unrolling [15]. We also implement a loop
ordering method. First, the loop tiling method divides the
entire activation data into tiles of a specified size and stores
them one by one in the on-chip memory before proceeding
with the convolution. Loop unrolling is a way to parallelize
the convolution operations using multiple tiles concurrently
to reduce DRAM access and maximize data reuse. The
example implementation of the proposed accelerator handles
16 input channels and 16 output channels simultaneously.
Then loop ordering sets the convolution order of the tiles to
be processed by the DCA blocks. The convolution order
includes an input iteration that iterates by changing the input
channel, a slice iteration that iterates the row and column for
one tile, and an output iteration that changes the filter. In this
paper, we define a tile as a slice.

Our previous CNN inference accelerator [17] fed
activation data from the DRAM to the input buffer via the
AXI bus in the form of 4 horizontally bundled pixels. This
input buffer organization imposes limitation on the use of
on-chip memory. For instance, if the data is fed in this form,
it must be read in a horizontal form when processing
overlapped data. At this point, the data other than the
overlapped data must also be read, resulting in a loss in the
utilization of on-chip memory. The improved accelerator
presented in this work bundles the activation data based on
the same single pixel rather than bundling four pixels
horizontally for the same input channel, so that the whole
input channel data for a single pixel is fed at once.

In addition, the previous NPU architecture has separate
input and output buffers for the post-convolution processing
blocks, Upsampling modules, Element-Wise Adder
modules, and Pooling modules in addition to the buffer for
the DCAs. The duplicate buffers incur unnecessarily large
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AXI to DRAM

HIXIILINW L 01 i

l Iterate four times
Partial
CDS.:Q:E!DH Sum (Bias —A‘::vsal‘i]g?\cf Scaling) 3:?:: AXIto DRAM
g Memory 4

Fig. 3. Proposed Architecture for Post-Convolution

overhead on the on-chip memory. In our proposed
architecture, we employ a global input buffer and a global
output buffer to allow modules to share buffers, thereby
reducing the on-chip memory size and making the structure
of the accelerator more flexible by allowing one memory
controller to manage DRAM access.

I1l. ARCHITECTURE ENHANCEMENT

In this section, we propose two enhancements to our
previous CNN accelerator.

A. Minimizing Post-Convolution Processing block

Our previous CNN accelerator architecture includes a
pipelined post-convolution processing block, called the
Bias-Activation-Scaling (BAS) block, which performs post-
convolution operations to produce the output features of
each layer. After the activation data and weights are
convolved, the partial sums for each channel are
accumulated by an adder tree block and stored in the partial
sum memory. These outputs are then passed to the post-
convolution processing block. The bias module adds a bias
parameter to the output of the convolution, and the values
are passed through the Leaky Rectified Linear Unit (Leaky
ReLU) in the activation module to introduce nonlinearity
into the output. The scaling parameters in the scaling module
then scale the output values from the activation module.
Finally, the output data is stored in the output buffer and sent
to the DRAM.

While the scaling process of many previous accelerator
architectures converts integer to floating-point back and
forth to provide higher accuracy [1][18]. Our accelerator’s
scaling process uses only 16-bit pure-integer by employing
an efficient architecture called Unified Scaling Pure-Integer
Quantization (USPIQ) method [19]. Compared to a floating-
point quantization model, this method reduced the on-chip
memory for parameters by ~75% and activation data by
43.68%. Despite this reduction, we can achieve a high
mAP@0.5 with a loss up to 0.61% for the YOLOvS5-nano
model [19].

To optimize the scaling operator in the scaling module,
the output of the convolution engine is fed into BAS blocks
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that can be scaled by different parameters via up to four skip
connection branches. To implement this, our previous
accelerator, shown in Fig. 2, had four BAS structures at the
end of each partial sum memory, and multiple outputs of the
convolution engine could be fed into these structures
simultaneously. However, if the number of the skip
connection branches for a convolution layer is more than one,
the computations on the branches can be completed
simultaneously, and their multiple output data should be sent
from the output buffer to the DRAM via the AXI bus. When
the output of one branch is sent to the DRAM, the output of
the other branches must wait for it. To alleviate the above
problem, the proposed accelerator shown in Fig. 3 introduces
the serial BAS architecture, which processes each branch of
the skip connection sequentially instead of processing
multiple branches in parallel. The serial BAS block
computes each branch iteratively. It can significantly reduce
the size of the BAS architecture and its output buffer by a
quarter. In addition, there is no additional processing time or
latency compared to the previous accelerator architecture
because the output data can be written to the DRAM
sequentially anyway.

B. Dual buffer structure to reduce DRAM access overhead

The dual buffer (or ping-pong buffer) [20][21] is a
structure used to minimize latency and optimize processing
speed during data transfer. It works by alternating between
two buffers to process data efficiently. This section presents
the structure, operation, and performance gain of the
proposed dual buffer in the example accelerator
implemented targeting the YOLOvS5-nano CNN model.

Our proposed accelerator operates with two input buffers.
The first input buffer, Buff 0, reads weights and activation
data from the DRAM for one slice size. These data are stored
in the input buffer and used in the convolution operation.
Once the required data are stored in Buff 0, the convolution
operation is conducted using the data in Buff 0. During the
convolution operation over Buff 0, the data for the next slice
are read from the DRAM and stored in the second input
buffer, Buff 1. Once the required data are stored in Buff 1,
the convolution operation is conducted using Buff 1. By
alternating between storing and processing data in this way,
the dual buffer can reduce the overhead of DRAM access
and improve the inference speed.

In [20], they implemented a ping-pong buffer by doubling
both the input buffer and output buffer. Applying ping-pong
buffer to the output buffer of the proposed architecture is
inefficient. This is because there is little improvement in
processing speed, considering that write access to the
DRAM is relatively small and short, requiring doubling the
on-chip memory in the output buffer. Therefore, we

introduce a dual buffer only for the input buffer. This
approach allows us to reduce the overhead of increasing on-
chip memory. The rationale for this approach is that while
our architecture reads duplicate data from the DRAM, the
output data written to the DRAM are not duplicated.

Fig. 4 shows the partial operations of the previous
architecture's Finite State Machine (FSM) and the proposed
architecture's FSMs, which include states for the ping-pong
buffer. Our previous architecture had only one FSM, but now
it is divided into three to maximize the efficiency of the dual
buffer operation, as shown in Fig. 5. Two FSMs are in charge
of data loading and computing, while the remaining FSM
handles the write operation of output data to the DRAM
through AXI bus. By dividing the FSMs into three, the
overall processing is parallelized, accelerating the speed.
Additionally, in our previous architecture, the read process
from the DRAM and the write process to the DRAM through
AXI bus cannot be performed simultaneously, because it
employs only one FSM. In contrast, in the proposed dual
buffer, data are loaded and computed simultaneously, so we
can separate read and write process.

A naive design of CNN accelerators using a ping-pong
buffer as the input buffer can cause errors in the operations
of the FSM. This is because each layer has different loading
and computation times. If one FSM has not finished loading
or computing, the other FSM must wait for it. In other words,
two FSMs will be in the load state at the same time if the
compute time is shorter than the load time. Conversely, two
FSMs will be in the compute state at the same time if the
compute time is longer than the load time. In both cases, they
will change addresses and fetch data from different
addresses. To avoid this, the proposed dual buffer uses flag
signals on both FSMs to indicate that each FSM has finished
loading and computing. When both FSMs set the flag to the
‘done’ state, the 'start’ signal is set to 1 and the two FSMs
switch roles to continue loading and calculating data.

IV. RESULT AND ANALYSIS

Fig. 6 shows the entire development environment. We
synthesized and implemented our CNN inference accelerator
using Xilinx Vivado and Verilog HDL. Fig. 7 shows the
overall layout with the RTL implementation from Vivado to
the target board. Our architecture's target FPGA is Zynq
UltraScale+ MPSoC ZCU102 Evaluation Board. We verified
our design using a CON-FMC connector to connect the host
PC and the ZCU102 Evaluation Board. As a target model,
we used the YOLOvVS5-nano model, one of the algorithms for
object detection based on deep learning, and COCO dataset.

Table I shows the resource usage comparison between the
previous architecture and the proposed architecture. The LUT
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count has been reduced by 7.31%, Flip-Flop (FF) count has
been reduced by 22.29%, BRAM remains the same size, and
the DSP count has been reduced by 3.90%. The reason the
size of the BRAM remains the same is that it has been
reduced by 48 by applying Section IV-A method but
increased again by 48 by applying Section IV-B method.

Table Il and Table 111 show the inference time comparison
for a slice size 40 and 20, respectively. According to Table
11, for a slice size 40, the inference time was reduced by
43.75% in the case of 3x3 kernel stride 2 case, by 28.10% in
the case of 1x1 kernel stride 1 case, and by 24.62% in the
case of 3x3 kernel stride 1 case. According to Table 111, for
slice size 20, the inference time was reduced by 40.08% in
the case of 1x1 kernel stride 1 case and by 38.63% in the
case of 3x3 kernel stride 1 case. There is no 3x3 kernel stride
2 case in the inference of the YOLOv5-nano model.

V. CONCLUSION

This paper proposes two optimizations and two
enhancements to our previous CNN inference accelerator.
Through these methods, we can optimize FPGA resource
usage, reduce on-chip memory size and accelerate inference
time. The focus of future work is optimizing the slice size of
the activation data. In our current architecture, the slice size is

http://www.idec.or.kr

TABLE I. RESOURCE USAGE COMPARISON

Previous Architecture Proposed Architecture
Resource Utilization Utilization | Utilization Utilization
[%] [%]
LUT 185,102 67.54 171,564 62.60
FF 252,610 46.08 196,305 35.81
BRAM 572 62.72 572 62.72
DSP 1,230 48.81 1,182 46.90

TABLE II. INFERENCE TIME COMPARISON FOR SLICE SIZE 40

Previous Proposed
slice size Decrement in time
Architecture Architecture
40 [%]
[cycle] [cycle]
3x3 stride 2 3,333,343 1,874,684 43.75
1x1 stride 1 6,687,978 4,808,235 28.10
3x3 stride 1 902,352 680,120 24.62

TABLE III. INFERENCE TIME COMPARISON FOR SLICE SIZE 20

Previous Proposed
slice size Decrement in time
Architecture Architecture
20 [%]
[cycle] [cycle]
1x1 stride 1 3,023,724 1,811,685 40.08
3x3 stride 1 228,334 140,124 38.63

limited to a square shape. In Section Il we introduced our
optimization method for how activation data is bundled.
With this method, we aim to use a slice size with a
rectangular shape, where the height is longer than the width.
This method allows the accelerator to increase the burst
length of the AXI bus while maximizing the use of the entire
on-chip memory.
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