
IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

CNN Inference Accelerator Optimized for AI Applications

for Object Detection

Bogeun Jung, Wooyoung Park, and Hyungwon Kim a
Department of Electronics Engineering, Chungbuk National University, Cheongju, Korea

E-mail : bogeunjung@chungbuk.ac.kr, wooyoungpark@chungbuk.ac.kr, hwkim@chungbuk.ac.kr

Abstract - The advancement of state-of-the-art technology has

dramatically impacted the field of Deep Neural Networks

(DNNs), especially Convolutional Neural Networks (CNNs). As

the demand for AI applications on mobile devices grows,

power-hungry GPUs are no longer viable for mobile AI

applications. Instead, there is a growing research trend towards

compact and low power Neural Processing Units (NPUs) to

solve current problems. This article presents an efficient

architecture of a CNN inference accelerator that is optimized

for AI applications on mobile devices. We propose two

architectural enhancements and two optimization methods to

improve the existing CNN accelerator [1]. To evaluate our

work, we implemented it on a Zynq UltraScale+ MPSoC ZCU

102 Evaluation Board and verified it with the YOLOv5-nano

model used for CNN object detection. Experimental results

show that we reduced resource utilization by 7.31% for LUTs,

22.29% for FFs, and 3.90% for DSPs. In our Vivado simulation,

we accelerated the inference time by 33.5%. With the reduced

resource usage described above, we have implemented an

accelerator with no loss of accuracy and better resource usage

and speed.

Keywords—Convolutional Neural Network, CNN inference

accelerator, Neural Processing Unit, YOLOv5-nano model

I. INTRODUCTION

A Deep Neural Network (DNN) is a complex neural

network with multiple layers and is one of the most popular

models used in the field of Artificial Intelligence (AI). In

recent years, with the advancement of AI, DNNs have

received growing attention in various fields and already

being utilized in various areas. Among the AI models that

utilize the DNN, Convolutional Neural Network (CNN) [2],

which has a structure that efficiently extracts features by

considering the spatial structure of the data and identifies

patterns through these features. CNNs are mainly used in

object detection [3][4], classification [5][6], segmentation

[7][8], and Natural Language Processing (NLP) [9][10].

While state-of-the-art DNN models employ a variation of

CNN, called transformer networks, CNNs are still

considered as mainstream of DNN models.

As neural networks evolve, the number of parameters

increases, and the CNNs become deeper and more complex

requiring faster accelerator hardware and chips. For

example, ResNet-50 [11], developed by Microsoft Research,

has 50 layers and 25 million parameters. Inception v4 [12],

one of the CNN architectures developed by Google, has

approximately 42 million parameters. AlexNet [13], a deep

learning architecture for image classification that won the

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012, has eight layers and approximately 60

million parameters. VGG-16 [14], one of the CNN

architectures developed by the University of Oxford that

won second place in the 2014 ILSVRC competition, has 16

layers and approximately 138 million parameters. Due to

this massive number of parameters, how well the hardware

is optimized is becoming important.

As the demand for AI applications on mobile devices

increases, power-hungry GPUs are no longer suitable for

mobile AI applications. Instead, there is a growing research

trend towards compact and low-power Neural Processing

Units (NPUs). This work presents an efficient architecture

for a CNN accelerator aimed at low-power mobile NPUs

with compact on-chip memory.

The main contributions of this paper are as follows:

1) A format change for bundling activation data from the

DRAM to minimize on-chip memory loss.

2) A global input buffer and global output buffer to free

up on-chip memory space and flexibly manage data.

3) Minimizing the Post-Convolution Processing block

to substantially reduce the size of the block and

output buffer.

4) A dual buffer structure to reduce DRAM access

overhead and accelerate the speed.

The rest of this paper is organized as follows: Section II

introduces the overall architecture of the proposed NPU,

including the first and second contributions briefly. Section

III introduces the third and fourth contributions. Section IV

presents the results of the RTL implementation and the

analysis of the experimental results. Finally, Section V

concludes this paper.

II. OVERALL ARCHITECTURE

Fig. 1 illustrates the overall architecture of the proposed

NPU, which consists of a convolutional block, input buffer,

a. Corresponding author; hwkim@chungbuk.ac.kr

Manuscript Received Mar. 4, 2024, Revised Apr. 11, 2024, Accepted Apr.
13, 2024

This is an Open Access article distributed under the terms of the Creative Commons

Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any

medium, provided the original work is properly cited.

6

mailto:bogeunjung@chungbuk.ac.kr
mailto:wooyoungpark@chungbuk.ac.kr
mailto:hwkim@chungbuk.ac.kr
mailto:hwkim@chungbuk.ac.kr
http://creativecommons.org/licenses/by-nc/4.0

IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

Fig. 1. Overall Architecture of proposed NPU

output buffer, microcode controller and memory, and post

convolution processing blocks (Upsampling modules,

Element-Wise Adder modules, and Pooling modules). The

convolutional block, a central block of the proposed CNN

accelerator, consists of four convolution engines called

Diagonal Cyclic Arrays (DCAs), where the multiply and

accumulate operations on the activation data and weights are

calculated. At this point, we cannot store all the activation

data and weights needed for the convolution in the on-chip

memory of the NPU chip. Therefore, we employ a loop

optimization method [15][16] in the proposed accelerator

architecture. The loop optimization method includes loop

tiling [15] and loop unrolling [15]. We also implement a loop

ordering method. First, the loop tiling method divides the

entire activation data into tiles of a specified size and stores

them one by one in the on-chip memory before proceeding

with the convolution. Loop unrolling is a way to parallelize

the convolution operations using multiple tiles concurrently

to reduce DRAM access and maximize data reuse. The

example implementation of the proposed accelerator handles

16 input channels and 16 output channels simultaneously.

Then loop ordering sets the convolution order of the tiles to

be processed by the DCA blocks. The convolution order

includes an input iteration that iterates by changing the input

channel, a slice iteration that iterates the row and column for

one tile, and an output iteration that changes the filter. In this

paper, we define a tile as a slice.

Our previous CNN inference accelerator [17] fed

activation data from the DRAM to the input buffer via the

AXI bus in the form of 4 horizontally bundled pixels. This

input buffer organization imposes limitation on the use of

on-chip memory. For instance, if the data is fed in this form,

it must be read in a horizontal form when processing

overlapped data. At this point, the data other than the

overlapped data must also be read, resulting in a loss in the

utilization of on-chip memory. The improved accelerator

presented in this work bundles the activation data based on

the same single pixel rather than bundling four pixels

horizontally for the same input channel, so that the whole

input channel data for a single pixel is fed at once.

In addition, the previous NPU architecture has separate

input and output buffers for the post-convolution processing

blocks, Upsampling modules, Element-Wise Adder

modules, and Pooling modules in addition to the buffer for

the DCAs. The duplicate buffers incur unnecessarily large

Fig. 2. Previous Architecture for Post-Convolution

Fig. 3. Proposed Architecture for Post-Convolution

overhead on the on-chip memory. In our proposed

architecture, we employ a global input buffer and a global

output buffer to allow modules to share buffers, thereby

reducing the on-chip memory size and making the structure

of the accelerator more flexible by allowing one memory

controller to manage DRAM access.

III. ARCHITECTURE ENHANCEMENT

In this section, we propose two enhancements to our

previous CNN accelerator.

A. Minimizing Post-Convolution Processing block

Our previous CNN accelerator architecture includes a

pipelined post-convolution processing block, called the

Bias-Activation-Scaling (BAS) block, which performs post-

convolution operations to produce the output features of

each layer. After the activation data and weights are

convolved, the partial sums for each channel are

accumulated by an adder tree block and stored in the partial

sum memory. These outputs are then passed to the post-

convolution processing block. The bias module adds a bias

parameter to the output of the convolution, and the values

are passed through the Leaky Rectified Linear Unit (Leaky

ReLU) in the activation module to introduce nonlinearity

into the output. The scaling parameters in the scaling module

then scale the output values from the activation module.

Finally, the output data is stored in the output buffer and sent

to the DRAM.

While the scaling process of many previous accelerator

architectures converts integer to floating-point back and

forth to provide higher accuracy [1][18]. Our accelerator’s

scaling process uses only 16-bit pure-integer by employing

an efficient architecture called Unified Scaling Pure-Integer

Quantization (USPIQ) method [19]. Compared to a floating-

point quantization model, this method reduced the on-chip

memory for parameters by ~75% and activation data by

43.68%. Despite this reduction, we can achieve a high

mAP@0.5 with a loss up to 0.61% for the YOLOv5-nano

model [19].

To optimize the scaling operator in the scaling module,

the output of the convolution engine is fed into BAS blocks

7

mailto:mAP@0.5

IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

Fig. 4. Finite State Machine of previous architecture

Fig. 5. Finite State Machine of proposed architecture

that can be scaled by different parameters via up to four skip

connection branches. To implement this, our previous

accelerator, shown in Fig. 2, had four BAS structures at the

end of each partial sum memory, and multiple outputs of the

convolution engine could be fed into these structures

simultaneously. However, if the number of the skip

connection branches for a convolution layer is more than one,

the computations on the branches can be completed

simultaneously, and their multiple output data should be sent

from the output buffer to the DRAM via the AXI bus. When

the output of one branch is sent to the DRAM, the output of

the other branches must wait for it. To alleviate the above

problem, the proposed accelerator shown in Fig. 3 introduces

the serial BAS architecture, which processes each branch of

the skip connection sequentially instead of processing

multiple branches in parallel. The serial BAS block

computes each branch iteratively. It can significantly reduce

the size of the BAS architecture and its output buffer by a

quarter. In addition, there is no additional processing time or

latency compared to the previous accelerator architecture

because the output data can be written to the DRAM

sequentially anyway.

B. Dual buffer structure to reduce DRAM access overhead

The dual buffer (or ping-pong buffer) [20][21] is a

structure used to minimize latency and optimize processing

speed during data transfer. It works by alternating between

two buffers to process data efficiently. This section presents

the structure, operation, and performance gain of the

proposed dual buffer in the example accelerator

implemented targeting the YOLOv5-nano CNN model.

Our proposed accelerator operates with two input buffers.

The first input buffer, Buff 0, reads weights and activation

data from the DRAM for one slice size. These data are stored

in the input buffer and used in the convolution operation.

Once the required data are stored in Buff 0, the convolution

operation is conducted using the data in Buff 0. During the

convolution operation over Buff 0, the data for the next slice

are read from the DRAM and stored in the second input

buffer, Buff 1. Once the required data are stored in Buff 1,

the convolution operation is conducted using Buff 1. By

alternating between storing and processing data in this way,

the dual buffer can reduce the overhead of DRAM access

and improve the inference speed.

In [20], they implemented a ping-pong buffer by doubling

both the input buffer and output buffer. Applying ping-pong

buffer to the output buffer of the proposed architecture is

inefficient. This is because there is little improvement in

processing speed, considering that write access to the

DRAM is relatively small and short, requiring doubling the

on-chip memory in the output buffer. Therefore, we

introduce a dual buffer only for the input buffer. This

approach allows us to reduce the overhead of increasing on-

chip memory. The rationale for this approach is that while

our architecture reads duplicate data from the DRAM, the

output data written to the DRAM are not duplicated.

Fig. 4 shows the partial operations of the previous

architecture's Finite State Machine (FSM) and the proposed

architecture's FSMs, which include states for the ping-pong

buffer. Our previous architecture had only one FSM, but now

it is divided into three to maximize the efficiency of the dual

buffer operation, as shown in Fig. 5. Two FSMs are in charge

of data loading and computing, while the remaining FSM

handles the write operation of output data to the DRAM

through AXI bus. By dividing the FSMs into three, the

overall processing is parallelized, accelerating the speed.

Additionally, in our previous architecture, the read process

from the DRAM and the write process to the DRAM through

AXI bus cannot be performed simultaneously, because it

employs only one FSM. In contrast, in the proposed dual

buffer, data are loaded and computed simultaneously, so we

can separate read and write process.

A naïve design of CNN accelerators using a ping-pong

buffer as the input buffer can cause errors in the operations

of the FSM. This is because each layer has different loading

and computation times. If one FSM has not finished loading

or computing, the other FSM must wait for it. In other words,

two FSMs will be in the load state at the same time if the

compute time is shorter than the load time. Conversely, two

FSMs will be in the compute state at the same time if the

compute time is longer than the load time. In both cases, they

will change addresses and fetch data from different

addresses. To avoid this, the proposed dual buffer uses flag

signals on both FSMs to indicate that each FSM has finished

loading and computing. When both FSMs set the flag to the

'done' state, the 'start' signal is set to 1 and the two FSMs

switch roles to continue loading and calculating data.

IV. RESULT AND ANALYSIS

Fig. 6 shows the entire development environment. We

synthesized and implemented our CNN inference accelerator

using Xilinx Vivado and Verilog HDL. Fig. 7 shows the

overall layout with the RTL implementation from Vivado to

the target board. Our architecture's target FPGA is Zynq

UltraScale+ MPSoC ZCU102 Evaluation Board. We verified

our design using a CON-FMC connector to connect the host

PC and the ZCU102 Evaluation Board. As a target model,

we used the YOLOv5-nano model, one of the algorithms for

object detection based on deep learning, and COCO dataset.

Table I shows the resource usage comparison between the

previous architecture and the proposed architecture. The LUT

8

IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

Fig. 6. Entire development environment

Fig. 7. Overall board layout

count has been reduced by 7.31%, Flip-Flop (FF) count has

been reduced by 22.29%, BRAM remains the same size, and

the DSP count has been reduced by 3.90%. The reason the

size of the BRAM remains the same is that it has been

reduced by 48 by applying Section IV-A method but

increased again by 48 by applying Section IV-B method.

Table II and Table III show the inference time comparison

for a slice size 40 and 20, respectively. According to Table

II, for a slice size 40, the inference time was reduced by

43.75% in the case of 3x3 kernel stride 2 case, by 28.10% in

the case of 1x1 kernel stride 1 case, and by 24.62% in the

case of 3x3 kernel stride 1 case. According to Table III, for

slice size 20, the inference time was reduced by 40.08% in

the case of 1x1 kernel stride 1 case and by 38.63% in the

case of 3x3 kernel stride 1 case. There is no 3x3 kernel stride

2 case in the inference of the YOLOv5-nano model.

V. CONCLUSION

This paper proposes two optimizations and two

enhancements to our previous CNN inference accelerator.

Through these methods, we can optimize FPGA resource

usage, reduce on-chip memory size and accelerate inference

time. The focus of future work is optimizing the slice size of

the activation data. In our current architecture, the slice size is

TABLE I. RESOURCE USAGE COMPARISON

TABLE II. INFERENCE TIME COMPARISON FOR SLICE SIZE 40

TABLE III. INFERENCE TIME COMPARISON FOR SLICE SIZE 20

limited to a square shape. In Section II we introduced our

optimization method for how activation data is bundled.

With this method, we aim to use a slice size with a

rectangular shape, where the height is longer than the width.

This method allows the accelerator to increase the burst

length of the AXI bus while maximizing the use of the entire

on-chip memory.

ACKNOWLEDGMENT

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2022R1A5A8026986) and

supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by

the Korea government (MSIT) (No.2020-0-01304,

Development of Self-learnable Mobile Recursive Neural

Network Processor Technology). It was also supported by

the MSIT (Ministry of Science and ICT), Korea, under the

Grand Information Technology Research Center support

program (IITP-2022-2020-0-01462) supervised by the IITP

(Institute for Information & communications Technology

Planning & Evaluation)” and supported by the National

Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (No. 2021R1F1A1061314). In

addition, this work was conducted during the research year

of Chungbuk National University in 2020. The chip

fabrication and EDA tool were supported by the IC Design

Education Center (IDEC), Korea.

 Previous Architecture Proposed Architecture

Resource Utilization Utilization

[%]

Utilization Utilization

[%]

LUT 185,102 67.54 171,564 62.60

FF 252,610 46.08 196,305 35.81

BRAM 572 62.72 572 62.72

DSP 1,230 48.81 1,182 46.90

slice size

40

Previous

Architecture

[cycle]

Proposed

Architecture

[cycle]

Decrement in time

[%]

3x3 stride 2 3,333,343 1,874,684 43.75

1x1 stride 1 6,687,978 4,808,235 28.10

3x3 stride 1 902,352 680,120 24.62

slice size

20

Previous

Architecture

[cycle]

Proposed

Architecture

[cycle]

Decrement in time

[%]

1x1 stride 1 3,023,724 1,811,685 40.08

3x3 stride 1 228,334 140,124 38.63

9

IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

REFERENCES

[1] WU, Chen, et al. Phoenix: A low-precision floating-point

quantization oriented architecture for convolutional

neural networks. arXiv preprint arXiv:2003.02628, 2020.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

2017. ImageNet classification with deep convolutional

neural networks. Commun. ACM 60, 6 (June 2017), 84–

90. https://doi.org/10.1145/3065386

[3] REDMON, Joseph, et al. You only look once: Unified,

real-time object detection. In: Proceedings of the IEEE

conference on computer vision and pattern recognition.

2016. p. 779-788.

[4] REN, Shaoqing, et al. Faster r-cnn: Towards real-time

object detection with region proposal

networks. Advances in neural information processing

systems, 2015, 28.

[5] HUANG, Gao, et al. Densely connected convolutional

networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017. p. 4700-

4708.

[6] IANDOLA, Forrest N., et al. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and< 0.5 MB model

size. arXiv preprint arXiv:1602.07360, 2016.

[7] LONG, Jonathan; SHELHAMER, Evan; DARRELL,

Trevor. Fully convolutional networks for semantic

segmentation. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2015. p.

3431-3440.

[8] CHEN, Liang-Chieh, et al. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE transactions

on pattern analysis and machine intelligence, 2017, 40.4:

834-848.

[9] CHEN, Matthew C., et al. Deep learning to classify

radiology free-text reports. Radiology, 2018, 286.3: 845-

852.

[10] KIM, Yoon. Convolutional neural networks for

sentence classification. arXiv preprint arXiv:1408.5882,

2014.

[11] HE, Kaiming, et al. Deep residual learning for image

recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016. p. 770-

778.

[12] SZEGEDY, Christian, et al. Inception-v4, inception-

resnet and the impact of residual connections on learning.

In: Proceedings of the AAAI conference on artificial

intelligence. 2017.

[13] KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON,

Geoffrey E. Imagenet classification with deep

convolutional neural networks. Advances in neural

information processing systems, 2012, 25.

[14] SIMONYAN, Karen; ZISSERMAN, Andrew. Very

deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[15] Y. Ma, Y. Cao, S. Vrudhula and J. -s. Seo, "Optimizing

the Convolution Operation to Accelerate Deep Neural

Networks on FPGA," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 26, no. 7,

pp. 1354-1367, July 2018, doi:

10.1109/TVLSI.2018.2815603.

[16] J. Li et al., "SmartShuttle: Optimizing off-chip memory

accesses for deep learning accelerators," 2018 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, Germany, 2018, pp. 343-348, doi:

10.23919/DATE.2018.8342033.

[17] Dongyeong Lee, "High Speed CNN Accelerator SoC

Design Based on Scalable Array." Master’s thesis in

Korea, Chungbuk National University, 2023.

Chungcheongbuk-do.

[18] CHOI, Dahun; KIM, Hyun. Hardware-friendly log-

scale quantization for CNNs with activation functions

containing negative values. In: 2021 18th International

SoC Design Conference (ISOCC). IEEE, 2021. p. 415-

416.

[19] Al-Hamid, A.A.; Kim, H. Unified Scaling-Based Pure-

Integer Quantization for Low-Power Accelerator of

Complex CNNs. Electronics 2023, 12, 2660.

https://doi.org/10.3390/electronics12122660.

[20] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,

Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-

based Accelerator Design for Deep Convolutional

Neural Networks. In Proceedings of the 2015

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA '15). Association for

Computing Machinery, New York, NY, USA, 161–170.

https://doi.org/10.1145/2684746.2689060.

[21] Y. Ma, Y. Cao, S. Vrudhula and J. -S. Seo,

"Performance Modeling for CNN Inference Accelerators

on FPGA," in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 39, no. 4,

pp. 843-856, April 2020, doi:

10.1109/TCAD.2019.2897634.

Bogeun Jung received his B.S.

degree in electronics engineering

from Chungbuk National

University, Cheongju, South Korea,

in 2024. He is currently a Master’s

student in the MSIS lab at

Chungbuk National University.

His research interests include

neural network processor SoC

design, CNN optimization, and AI

Accelerators.

Wooyoung Park is currently a

senior in the Department of

electronics engineering at

Chungbuk National University,

Cheongju, Korea. He is an

integrated Bachelor's and Master's

course student in the MSIS lab at

Chungbuk National University.

His research interests include

neural network processor SoC

design, CNN optimization, and AI

Accelerators.

10

https://doi.org/10.1145/2684746.2689060

IDEC Journal of Integrated Circuits and Systems, VOL 10, No.3, July 2024 http://www.idec.or.kr

Hyungwon Kim received the B.S.

and M.S. degrees in electrical

engineering from the Korea

Advanced Institute of Science and

Technology in 1991 and 1993,

respectively, and the Ph.D. degree

in electrical engineering and

computer science from the

University of Michigan, Ann Arbor,

MI, USA, in 1999. In 1999, he

joined Synopsys Inc., Mountain View, CA, USA, where he

developed electronic design automation software. In 2001,

he joined Broadcom Inc., San Jose, CA, USA, where he

developed various network chips, including a WiFi gateway

router chip, a network processor for 3G, and 10 gigabit

ethernet chips. In 2005, he founded Xronet, Inc., a Korea-

based wireless chip maker, where he managed the company

as CEO to successfully develop and commercialize wireless

baseband and RF chips and software, including WiMAX

chips supporting IEEE802.16e and WiFi chips supporting

IEEE802.11a/b/g/n. Since 2013, he has been with Chungbuk

National University, Cheongju, South Korea, where he is

currently an Associate Professor with the Department of

Electronics Engineering. His current research focuses on

neural network processor SoCs, CNN optimization, object

recognition for autonomous driving, V2X network and

security, sensor read-out circuits, touch screen controller

SoCs, and wireless sensor networks.

11

