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Abstract - The advancement of state-of-the-art technology has 

dramatically impacted the field of Deep Neural Networks 

(DNNs), especially Convolutional Neural Networks (CNNs). As 

the demand for AI applications on mobile devices grows, 

power-hungry GPUs are no longer viable for mobile AI 

applications. Instead, there is a growing research trend towards 

compact and low power Neural Processing Units (NPUs) to 

solve current problems. This article presents an efficient 

architecture of a CNN inference accelerator that is optimized 

for AI applications on mobile devices. We propose two 

architectural enhancements and two optimization methods to 

improve the existing CNN accelerator [1]. To evaluate our 

work, we implemented it on a Zynq UltraScale+ MPSoC ZCU 

102 Evaluation Board and verified it with the YOLOv5-nano 

model used for CNN object detection. Experimental results 

show that we reduced resource utilization by 7.31% for LUTs, 

22.29% for FFs, and 3.90% for DSPs. In our Vivado simulation, 

we accelerated the inference time by 33.5%. With the reduced 

resource usage described above, we have implemented an 

accelerator with no loss of accuracy and better resource usage 

and speed. 
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I. INTRODUCTION 

A Deep Neural Network (DNN) is a complex neural 

network with multiple layers and is one of the most popular 

models used in the field of Artificial Intelligence (AI). In 

recent years, with the advancement of AI, DNNs have 

received growing attention in various fields and already 

being utilized in various areas. Among the AI models that 

utilize the DNN, Convolutional Neural Network (CNN) [2], 

which has a structure that efficiently extracts features by 

considering the spatial structure of the data and identifies 

patterns through these features. CNNs are mainly used in 

object detection [3][4], classification [5][6], segmentation 

[7][8], and Natural Language Processing (NLP) [9][10]. 

While state-of-the-art DNN models employ a variation of 

CNN, called transformer networks, CNNs are still 

considered as mainstream of DNN models. 

As neural networks evolve, the number of parameters 

increases, and the CNNs become deeper and more complex 

requiring faster accelerator hardware and chips. For 

example, ResNet-50 [11], developed by Microsoft Research, 

has 50 layers and 25 million parameters. Inception v4 [12], 

one of the CNN architectures developed by Google, has 

approximately 42 million parameters. AlexNet [13], a deep 

learning architecture for image classification that won the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012, has eight layers and approximately 60 

million parameters. VGG-16 [14], one of the CNN 

architectures developed by the University of Oxford that 

won second place in the 2014 ILSVRC competition, has 16 

layers and approximately 138 million parameters. Due to 

this massive number of parameters, how well the hardware 

is optimized is becoming important. 

As the demand for AI applications on mobile devices 

increases, power-hungry GPUs are no longer suitable for 

mobile AI applications. Instead, there is a growing research 

trend towards compact and low-power Neural Processing 

Units (NPUs). This work presents an efficient architecture 

for a CNN accelerator aimed at low-power mobile NPUs 

with compact on-chip memory.  

The main contributions of this paper are as follows: 

1) A format change for bundling activation data from the 

DRAM to minimize on-chip memory loss. 

2) A global input buffer and global output buffer to free 

up on-chip memory space and flexibly manage data. 

3) Minimizing the Post-Convolution Processing block 

to substantially reduce the size of the block and 

output buffer. 

4) A dual buffer structure to reduce DRAM access 

overhead and accelerate the speed.  

The rest of this paper is organized as follows: Section II 

introduces the overall architecture of the proposed NPU, 

including the first and second contributions briefly. Section 

III introduces the third and fourth contributions. Section IV 

presents the results of the RTL implementation and the 

analysis of the experimental results. Finally, Section V 

concludes this paper. 

II. OVERALL ARCHITECTURE 

Fig. 1 illustrates the overall architecture of the proposed 

NPU, which consists of a convolutional block, input buffer, 
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Fig. 1. Overall Architecture of proposed NPU 

 

output buffer, microcode controller and memory, and post 

convolution processing blocks (Upsampling modules, 

Element-Wise Adder modules, and Pooling modules). The 

convolutional block, a central block of the proposed CNN 

accelerator, consists of four convolution engines called 

Diagonal Cyclic Arrays (DCAs), where the multiply and 

accumulate operations on the activation data and weights are 

calculated. At this point, we cannot store all the activation 

data and weights needed for the convolution in the on-chip 

memory of the NPU chip. Therefore, we employ a loop 

optimization method [15][16] in the proposed accelerator 

architecture. The loop optimization method includes loop 

tiling [15] and loop unrolling [15]. We also implement a loop 

ordering method. First, the loop tiling method divides the 

entire activation data into tiles of a specified size and stores 

them one by one in the on-chip memory before proceeding 

with the convolution. Loop unrolling is a way to parallelize 

the convolution operations using multiple tiles concurrently 

to reduce DRAM access and maximize data reuse. The 

example implementation of the proposed accelerator handles 

16 input channels and 16 output channels simultaneously. 

Then loop ordering sets the convolution order of the tiles to 

be processed by the DCA blocks. The convolution order 

includes an input iteration that iterates by changing the input 

channel, a slice iteration that iterates the row and column for 

one tile, and an output iteration that changes the filter. In this 

paper, we define a tile as a slice. 

Our previous CNN inference accelerator [17] fed 

activation data from the DRAM to the input buffer via the 

AXI bus in the form of 4 horizontally bundled pixels. This 

input buffer organization imposes limitation on the use of 

on-chip memory. For instance, if the data is fed in this form, 

it must be read in a horizontal form when processing 

overlapped data. At this point, the data other than the 

overlapped data must also be read, resulting in a loss in the 

utilization of on-chip memory. The improved accelerator 

presented in this work bundles the activation data based on 

the same single pixel rather than bundling four pixels 

horizontally for the same input channel, so that the whole 

input channel data for a single pixel is fed at once. 

In addition, the previous NPU architecture has separate 

input and output buffers for the post-convolution processing 

blocks, Upsampling modules, Element-Wise Adder 

modules, and Pooling modules in addition to the buffer for 

the DCAs. The duplicate buffers incur unnecessarily large  

 
Fig. 2. Previous Architecture for Post-Convolution 

 

 
Fig. 3. Proposed Architecture for Post-Convolution 

 

overhead on the on-chip memory. In our proposed 

architecture, we employ a global input buffer and a global 

output buffer to allow modules to share buffers, thereby 

reducing the on-chip memory size and making the structure 

of the accelerator more flexible by allowing one memory 

controller to manage DRAM access. 

III. ARCHITECTURE ENHANCEMENT 

In this section, we propose two enhancements to our 

previous CNN accelerator. 

 

A. Minimizing Post-Convolution Processing block 

Our previous CNN accelerator architecture includes a 

pipelined post-convolution processing block, called the 

Bias-Activation-Scaling (BAS) block, which performs post-

convolution operations to produce the output features of 

each layer. After the activation data and weights are 

convolved, the partial sums for each channel are 

accumulated by an adder tree block and stored in the partial 

sum memory. These outputs are then passed to the post-

convolution processing block. The bias module adds a bias 

parameter to the output of the convolution, and the values 

are passed through the Leaky Rectified Linear Unit (Leaky 

ReLU) in the activation module to introduce nonlinearity 

into the output. The scaling parameters in the scaling module 

then scale the output values from the activation module. 

Finally, the output data is stored in the output buffer and sent 

to the DRAM. 

While the scaling process of many previous accelerator 

architectures converts integer to floating-point back and 

forth to provide higher accuracy [1][18]. Our accelerator’s 

scaling process uses only 16-bit pure-integer by employing 

an efficient architecture called Unified Scaling Pure-Integer 

Quantization (USPIQ) method [19]. Compared to a floating-

point quantization model, this method reduced the on-chip 

memory for parameters by ~75% and activation data by 

43.68%. Despite this reduction, we can achieve a high 

mAP@0.5 with a loss up to 0.61% for the YOLOv5-nano 

model [19]. 

To optimize the scaling operator in the scaling module, 

the output of the convolution engine is fed into BAS blocks 
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Fig. 4. Finite State Machine of previous architecture  

 

 
Fig. 5. Finite State Machine of proposed architecture 

 

that can be scaled by different parameters via up to four skip 

connection branches. To implement this, our previous 

accelerator, shown in Fig. 2, had four BAS structures at the 

end of each partial sum memory, and multiple outputs of the 

convolution engine could be fed into these structures 

simultaneously. However, if the number of the skip 

connection branches for a convolution layer is more than one, 

the computations on the branches can be completed 

simultaneously, and their multiple output data should be sent 

from the output buffer to the DRAM via the AXI bus. When 

the output of one branch is sent to the DRAM, the output of 

the other branches must wait for it. To alleviate the above 

problem, the proposed accelerator shown in Fig. 3 introduces 

the serial BAS architecture, which processes each branch of 

the skip connection sequentially instead of processing 

multiple branches in parallel. The serial BAS block 

computes each branch iteratively. It can significantly reduce 

the size of the BAS architecture and its output buffer by a 

quarter. In addition, there is no additional processing time or 

latency compared to the previous accelerator architecture 

because the output data can be written to the DRAM 

sequentially anyway. 

 

B. Dual buffer structure to reduce DRAM access overhead 

The dual buffer (or ping-pong buffer) [20][21] is a 

structure used to minimize latency and optimize processing 

speed during data transfer. It works by alternating between 

two buffers to process data efficiently. This section presents 

the structure, operation, and performance gain of the 

proposed dual buffer in the example accelerator 

implemented targeting the YOLOv5-nano CNN model. 

Our proposed accelerator operates with two input buffers. 

The first input buffer, Buff 0, reads weights and activation 

data from the DRAM for one slice size. These data are stored 

in the input buffer and used in the convolution operation. 

Once the required data are stored in Buff 0, the convolution 

operation is conducted using the data in Buff 0. During the 

convolution operation over Buff 0, the data for the next slice 

are read from the DRAM and stored in the second input 

buffer, Buff 1. Once the required data are stored in Buff 1, 

the convolution operation is conducted using Buff 1. By 

alternating between storing and processing data in this way, 

the dual buffer can reduce the overhead of DRAM access 

and improve the inference speed. 

In [20], they implemented a ping-pong buffer by doubling 

both the input buffer and output buffer. Applying ping-pong 

buffer to the output buffer of the proposed architecture is 

inefficient. This is because there is little improvement in 

processing speed, considering that write access to the 

DRAM is relatively small and short, requiring doubling the 

on-chip memory in the output buffer.  Therefore, we  

 

introduce a dual buffer only for the input buffer. This 

approach allows us to reduce the overhead of increasing on-

chip memory. The rationale for this approach is that while 

our architecture reads duplicate data from the DRAM, the 

output data written to the DRAM are not duplicated. 

Fig. 4 shows the partial operations of the previous 

architecture's Finite State Machine (FSM) and the proposed 

architecture's FSMs, which include states for the ping-pong 

buffer. Our previous architecture had only one FSM, but now 

it is divided into three to maximize the efficiency of the dual 

buffer operation, as shown in Fig. 5. Two FSMs are in charge 

of data loading and computing, while the remaining FSM 

handles the write operation of output data to the DRAM 

through AXI bus. By dividing the FSMs into three, the 

overall processing is parallelized, accelerating the speed. 

Additionally, in our previous architecture, the read process 

from the DRAM and the write process to the DRAM through 

AXI bus cannot be performed simultaneously, because it 

employs only one FSM. In contrast, in the proposed dual 

buffer, data are loaded and computed simultaneously, so we 

can separate read and write process. 

A naïve design of CNN accelerators using a ping-pong 

buffer as the input buffer can cause errors in the operations 

of the FSM. This is because each layer has different loading 

and computation times. If one FSM has not finished loading 

or computing, the other FSM must wait for it. In other words, 

two FSMs will be in the load state at the same time if the 

compute time is shorter than the load time. Conversely, two 

FSMs will be in the compute state at the same time if the 

compute time is longer than the load time. In both cases, they 

will change addresses and fetch data from different 

addresses. To avoid this, the proposed dual buffer uses flag 

signals on both FSMs to indicate that each FSM has finished 

loading and computing. When both FSMs set the flag to the 

'done' state, the 'start' signal is set to 1 and the two FSMs 

switch roles to continue loading and calculating data. 

IV. RESULT AND ANALYSIS 

Fig. 6 shows the entire development environment. We 

synthesized and implemented our CNN inference accelerator 

using Xilinx Vivado and Verilog HDL. Fig. 7 shows the 

overall layout with the RTL implementation from Vivado to 

the target board. Our architecture's target FPGA is Zynq 

UltraScale+ MPSoC ZCU102 Evaluation Board. We verified 

our design using a CON-FMC connector to connect the host 

PC and the ZCU102 Evaluation Board. As a target model, 

we used the YOLOv5-nano model, one of the algorithms for 

object detection based on deep learning, and COCO dataset. 

Table I shows the resource usage comparison between the 

previous architecture and the proposed architecture. The LUT  
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Fig. 6. Entire development environment  

 

 
Fig. 7. Overall board layout  

 

count has been reduced by 7.31%, Flip-Flop (FF) count has 

been reduced by 22.29%, BRAM remains the same size, and 

the DSP count has been reduced by 3.90%. The reason the 

size of the BRAM remains the same is that it has been 

reduced by 48 by applying Section IV-A method but 

increased again by 48 by applying Section IV-B method. 

Table II and Table III show the inference time comparison 

for a slice size 40 and 20, respectively. According to Table 

II, for a slice size 40, the inference time was reduced by 

43.75% in the case of 3x3 kernel stride 2 case, by 28.10% in 

the case of 1x1 kernel stride 1 case, and by 24.62% in the 

case of 3x3 kernel stride 1 case. According to Table III, for 

slice size 20, the inference time was reduced by 40.08% in 

the case of 1x1 kernel stride 1 case and by 38.63% in the 

case of 3x3 kernel stride 1 case. There is no 3x3 kernel stride 

2 case in the inference of the YOLOv5-nano model. 

V. CONCLUSION 

This paper proposes two optimizations and two 

enhancements to our previous CNN inference accelerator. 

Through these methods, we can optimize FPGA resource 

usage, reduce on-chip memory size and accelerate inference 

time. The focus of future work is optimizing the slice size of 

the activation data. In our current architecture, the slice size is 
 

TABLE I. RESOURCE USAGE COMPARISON 

 
TABLE II. INFERENCE TIME COMPARISON FOR SLICE SIZE 40 

 
TABLE III. INFERENCE TIME COMPARISON FOR SLICE SIZE 20 

 

limited to a square shape. In Section II we introduced our 

optimization method for how activation data is bundled. 

With this method, we aim to use a slice size with a 

rectangular shape, where the height is longer than the width. 

This method allows the accelerator to increase the burst 

length of the AXI bus while maximizing the use of the entire 

on-chip memory. 
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 Previous Architecture Proposed Architecture 

Resource Utilization Utilization 

[%] 

Utilization Utilization 

[%] 

LUT 185,102 67.54 171,564 62.60 

FF 252,610 46.08 196,305 35.81 

BRAM 572 62.72 572 62.72 

DSP 1,230 48.81 1,182 46.90 

slice size 

40 

Previous 

Architecture 

[cycle] 

Proposed 

Architecture 

[cycle] 

Decrement in time  

[%] 

3x3 stride 2 3,333,343 1,874,684 43.75 

1x1 stride 1 6,687,978 4,808,235 28.10 

3x3 stride 1 902,352 680,120 24.62 

slice size 

20 

Previous 

Architecture 

[cycle] 

Proposed 

Architecture 

[cycle] 

Decrement in time 

[%] 

1x1 stride 1 3,023,724 1,811,685 40.08 

3x3 stride 1 228,334 140,124 38.63 
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