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Abstract - The advancement of state-of-the-art technology has 
dramatically impacted the field of Deep Neural Networks 
(DNNs), especially Convolutional Neural Networks (CNNs). As 
the demand for AI applications on mobile devices grows, 
power-hungry GPUs are no longer viable for mobile AI 
applications. Instead, there is a growing research trend towards 
compact and low power Neural Processing Units (NPUs) to 
solve current problems. This article presents an efficient 
architecture of a CNN inference accelerator that is optimized 
for AI applications on mobile devices. We propose two 
architectural enhancements and two optimization methods to 
improve the existing CNN accelerator [17]. To evaluate our 
work, we implemented it on a Zynq UltraScale+ MPSoC ZCU 
102 Evaluation Board and verified it with the YOLOv5-nano 
model used for CNN object detection. Experimental results 
show that we reduced resource utilization by 7.31% for LUTs, 
22.29% for FFs, and 3.90% for DSPs. In our Vivado simulation, 
we accelerated the inference time by 33.5%. With the reduced 
resource usage described above, we have implemented an 
accelerator with no loss of accuracy and better resource usage 
and speed. 
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I. INTRODUCTION 

A Deep Neural Network (DNN) is a complex neural 
network with multiple layers and is one of the most popular 
models used in the field of Artificial Intelligence (AI). In 
recent years, with the advancement of AI, DNNs have 
received growing attention in various fields and already 
being utilized in various areas. Among the AI models that 
utilize the DNN, Convolutional Neural Network (CNN) [1], 
which has a structure that efficiently extracts features by 
considering the spatial structure of the data and identifies 
patterns through these features. CNNs are mainly used in 
object detection [2][3], classification [4][5], segmentation 
[6][7], and Natural Language Processing (NLP) [8][9]. 
While state-of-the-art DNN models employ a variation of 
CNN, called transformer networks, CNNs are still 

considered as mainstream of DNN models. 
As neural networks evolve, the number of parameters 

increases, and the CNNs become deeper and more complex 
requiring faster accelerator hardware and chips. For 
example, ResNet-50 [10], developed by Microsoft Research, 
has 50 layers and 25 million parameters. Inception v4 [11], 
one of the CNN architectures developed by Google, has 
approximately 42 million parameters. AlexNet [12], a deep 
learning architecture for image classification that won the 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) in 2012, has eight layers and approximately 60 
million parameters. VGG-16 [13], one of the CNN 
architectures developed by the University of Oxford that 
won second place in the 2014 ILSVRC competition, has 16 
layers and approximately 138 million parameters. Due to 
this massive number of parameters, how well the hardware 
is optimized is becoming important. 

As the demand for AI applications on mobile devices 
increases, power-hungry GPUs are no longer suitable for 
mobile AI applications. Instead, there is a growing research 
trend towards compact and low-power Neural Processing 
Units (NPUs). This work presents an efficient architecture 
for a CNN accelerator aimed at low-power mobile NPUs 
with compact on-chip memory.  

The main contributions of this paper are as follows: 
1) A format change for bundling activation data from the 

DRAM to minimize on-chip memory loss. 
2) A global input buffer and global output buffer to free 

up on-chip memory space and flexibly manage data. 
3) Minimizing the Post-Convolution Processing block 

to substantially reduce the size of the block and 
output buffer. 

4) A dual buffer structure to reduce DRAM access 
overhead and accelerate the speed.  

The rest of this paper is organized as follows: Section II 
introduces the overall architecture of the proposed NPU, 
including the first and second contributions briefly. Section 
III introduces the third and fourth contributions. Section IV 
presents the results of the RTL implementation and the 
analysis of the experimental results. Finally, Section V 
concludes this paper. 

II. OVERALL ARCHITECTURE 

Fig. 1 illustrates the overall architecture of the proposed 
NPU, which consists of a convolutional block, input buffer, 
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Fig. 1. Overall Architecture of proposed NPU 

 
output buffer, microcode controller and memory, and post 
convolution processing blocks (Upsampling modules, 
Element-Wise Adder modules, and Pooling modules). The 
convolutional block, a central block of the proposed CNN 
accelerator, consists of four convolution engines called 
Diagonal Cyclic Arrays (DCAs), where the multiply and 
accumulate operations on the activation data and weights are 
calculated. At this point, we cannot store all the activation 
data and weights needed for the convolution in the on-chip 
memory of the NPU chip. Therefore, we employ a loop 
optimization method [14][15] in the proposed accelerator 
architecture. The loop optimization method includes loop 
tiling [14] and loop unrolling [14]. We also implement a loop 
ordering method. First, the loop tiling method divides the 
entire activation data into tiles of a specified size and stores 
them one by one in the on-chip memory before proceeding 
with the convolution. Loop unrolling is a way to parallelize 
the convolution operations using multiple tiles concurrently 
to reduce DRAM access and maximize data reuse. The 
example implementation of the proposed accelerator handles 
16 input channels and 16 output channels simultaneously. 
Then loop ordering sets the convolution order of the tiles to 
be processed by the DCA blocks. The convolution order 
includes an input iteration that iterates by changing the input 
channel, a slice iteration that iterates the row and column for 
one tile, and an output iteration that changes the filter. In this 
paper, we define a tile as a slice. 

Our previous CNN inference accelerator [16] fed 
activation data from the DRAM to the input buffer via the 
AXI bus in the form of 4 horizontally bundled pixels. This 
input buffer organization imposes limitation on the use of 
on-chip memory. For instance, if the data is fed in this form, 
it must be read in a horizontal form when processing 
overlapped data. At this point, the data other than the 
overlapped data must also be read, resulting in a loss in the 
utilization of on-chip memory. The improved accelerator 
presented in this work bundles the activation data based on 
the same single pixel rather than bundling four pixels 
horizontally for the same input channel, so that the whole 
input channel data for a single pixel is fed at once. 

In addition, the previous NPU architecture has separate 
input and output buffers for the post-convolution processing 
blocks, Upsampling modules, Element-Wise Adder 
modules, and Pooling modules in addition to the buffer for 
the DCAs. The duplicate buffers incur unnecessarily large  

 
Fig. 2. Previous Architecture for Post-Convolution 

 

 
Fig. 3. Proposed Architecture for Post-Convolution 

 
overhead on the on-chip memory. In our proposed 
architecture, we employ a global input buffer and a global 
output buffer to allow modules to share buffers, thereby 
reducing the on-chip memory size and making the structure 
of the accelerator more flexible by allowing one memory 
controller to manage DRAM access. 

III. ARCHITECTURE ENHANCEMENT 

In this section, we propose two enhancements to our 
previous CNN accelerator. 

 
A. Minimizing Post-Convolution Processing block 

Our previous CNN accelerator architecture includes a 
pipelined post-convolution processing block, called the 
Bias-Activation-Scaling (BAS) block, which performs post-
convolution operations to produce the output features of 
each layer. After the activation data and weights are 
convolved, the partial sums for each channel are 
accumulated by an adder tree block and stored in the partial 
sum memory. These outputs are then passed to the post-
convolution processing block. The bias module adds a bias 
parameter to the output of the convolution, and the values 
are passed through the Leaky Rectified Linear Unit (Leaky 
ReLU) in the activation module to introduce nonlinearity 
into the output. The scaling parameters in the scaling module 
then scale the output values from the activation module. 
Finally, the output data is stored in the output buffer and sent 
to the DRAM. 

While the scaling process of many previous accelerator 
architectures converts integer to floating-point back and 
forth to provide higher accuracy [17][18]. Our accelerator’s 
scaling process uses only 16-bit pure-integer by employing 
an efficient architecture called Unified Scaling Pure-Integer 
Quantization (USPIQ) method [19]. Compared to a floating-
point quantization model, this method reduced the on-chip 
memory for parameters by ~75% and activation data by 
43.68%. Despite this reduction, we can achieve a high 
mAP@0.5 with a loss up to 0.61% for the YOLOv5-nano 
model [19]. 

To optimize the scaling operator in the scaling module, 
the output of the convolution engine is fed into BAS blocks 
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Fig. 4. Finite State Machine of previous architecture  

 

 
Fig. 5. Finite State Machine of proposed architecture 

 
that can be scaled by different parameters via up to four skip 
connection branches. To implement this, our previous 
accelerator, shown in Fig. 2, had four BAS structures at the 
end of each partial sum memory, and multiple outputs of the 
convolution engine could be fed into these structures 
simultaneously. However, if the number of the skip 
connection branches for a convolution layer is more than one, 
the computations on the branches can be completed 
simultaneously, and their multiple output data should be sent 
from the output buffer to the DRAM via the AXI bus. When 
the output of one branch is sent to the DRAM, the output of 
the other branches must wait for it. To alleviate the above 
problem, the proposed accelerator shown in Fig. 3 introduces 
the serial BAS architecture, which processes each branch of 
the skip connection sequentially instead of processing 
multiple branches in parallel. The serial BAS block 
computes each branch iteratively. It can significantly reduce 
the size of the BAS architecture and its output buffer by a 
quarter. In addition, there is no additional processing time or 
latency compared to the previous accelerator architecture 
because the output data can be written to the DRAM 
sequentially anyway. 

 
B. Dual buffer structure to reduce DRAM access overhead 

The dual buffer (or ping-pong buffer) [20][21] is a 
structure used to minimize latency and optimize processing 
speed during data transfer. It works by alternating between 
two buffers to process data efficiently. This section presents 
the structure, operation, and performance gain of the 
proposed dual buffer in the example accelerator 
implemented targeting the YOLOv5-nano CNN model. 

Our proposed accelerator operates with two input buffers. 
The first input buffer, Buff 0, reads weights and activation 
data from the DRAM for one slice size. These data are stored 
in the input buffer and used in the convolution operation. 
Once the required data are stored in Buff 0, the convolution 
operation is conducted using the data in Buff 0. During the 
convolution operation over Buff 0, the data for the next slice 
are read from the DRAM and stored in the second input 
buffer, Buff 1. Once the required data are stored in Buff 1, 
the convolution operation is conducted using Buff 1. By 
alternating between storing and processing data in this way, 
the dual buffer can reduce the overhead of DRAM access 
and improve the inference speed. 

In [20], they implemented a ping-pong buffer by doubling 
both the input buffer and output buffer. Applying ping-pong 
buffer to the output buffer of the proposed architecture is 
inefficient. This is because there is little improvement in 
processing speed, considering that write access to the 
DRAM is relatively small and short, requiring doubling the 
on-chip memory in the output buffer. Therefore, we  

 
introduce a dual buffer only for the input buffer. This 
approach allows us to reduce the overhead of increasing on-
chip memory. The rationale for this approach is that while 
our architecture reads duplicate data from the DRAM, the 
output data written to the DRAM are not duplicated. 

Fig. 4 shows the partial operations of the previous 
architecture's Finite State Machine (FSM) and the proposed 
architecture's FSMs, which include states for the ping-pong 
buffer. Our previous architecture had only one FSM, but now 
it is divided into three to maximize the efficiency of the dual 
buffer operation, as shown in Fig. 5. Two FSMs are in charge 
of data loading and computing, while the remaining FSM 
handles the write operation of output data to the DRAM 
through AXI bus. By dividing the FSMs into three, the 
overall processing is parallelized, accelerating the speed. 
Additionally, in our previous architecture, the read process 
from the DRAM and the write process to the DRAM through 
AXI bus cannot be performed simultaneously, because it 
employs only one FSM. In contrast, in the proposed dual 
buffer, data are loaded and computed simultaneously, so we 
can separate read and write process. 

A naïve design of CNN accelerators using a ping-pong 
buffer as the input buffer can cause errors in the operations 
of the FSM. This is because each layer has different loading 
and computation times. If one FSM has not finished loading 
or computing, the other FSM must wait for it. In other words, 
two FSMs will be in the load state at the same time if the 
compute time is shorter than the load time. Conversely, two 
FSMs will be in the compute state at the same time if the 
compute time is longer than the load time. In both cases, they 
will change addresses and fetch data from different 
addresses. To avoid this, the proposed dual buffer uses flag 
signals on both FSMs to indicate that each FSM has finished 
loading and computing. When both FSMs set the flag to the 
'done' state, the 'start' signal is set to 1 and the two FSMs 
switch roles to continue loading and calculating data. 

IV. RESULT AND ANALYSIS 

Fig. 6 shows the entire development environment. We 
synthesized and implemented our CNN inference accelerator 
using Xilinx Vivado and Verilog HDL. Fig. 7 shows the 
overall layout with the RTL implementation from Vivado to 
the target board. Our architecture's target FPGA is Zynq 
UltraScale+ MPSoC ZCU102 Evaluation Board. We verified 
our design using a CON-FMC connector to connect the host 
PC and the ZCU102 Evaluation Board. As a target model, 
we used the YOLOv5-nano model, one of the algorithms for 
object detection based on deep learning, and COCO dataset. 

Table I shows the resource usage comparison between the 
previous architecture and the proposed architecture. The LUT  
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Fig. 6. Entire development environment  

 

 
Fig. 7. Overall board layout  

 
count has been reduced by 7.31%, Flip-Flop (FF) count has 
been reduced by 22.29%, BRAM remains the same size, and 
the DSP count has been reduced by 3.90%. The reason the 
size of the BRAM remains the same is that it has been 
reduced by 48 by applying Section IV-A method but 
increased again by 48 by applying Section IV-B method. 

Table II and Table III show the inference time comparison 
for a slice size 40 and 20, respectively. According to Table 
II, for a slice size 40, the inference time was reduced by 
43.75% in the case of 3x3 kernel stride 2 case, by 28.10% in 
the case of 1x1 kernel stride 1 case, and by 24.62% in the 
case of 3x3 kernel stride 1 case. According to Table III, for 
slice size 20, the inference time was reduced by 40.08% in 
the case of 1x1 kernel stride 1 case and by 38.63% in the 
case of 3x3 kernel stride 1 case. There is no 3x3 kernel stride 
2 case in the inference of the YOLOv5-nano model. 

V. CONCLUSION 

This paper proposes two optimizations and two 
enhancements to our previous CNN inference accelerator. 
Through these methods, we can optimize FPGA resource 
usage, reduce on-chip memory size and accelerate inference 
time. The focus of future work is optimizing the slice size of 
the activation data. In our current architecture, the slice size is 

 

TABLE I. RESOURCE USAGE COMPARISON 

 
TABLE II. INFERENCE TIME COMPARISON FOR SLICE SIZE 40 

 
TABLE III. INFERENCE TIME COMPARISON FOR SLICE SIZE 20 

 
limited to a square shape. In Section II we introduced our 
optimization method for how activation data is bundled. 
With this method, we aim to use a slice size with a 
rectangular shape, where the height is longer than the width. 
This method allows the accelerator to increase the burst 
length of the AXI bus while maximizing the use of the entire 
on-chip memory. 
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 Previous Architecture Proposed Architecture 

Resource Utilization Utilization 
[%] 

Utilization Utilization 
[%] 

LUT 185,102 67.54 171,564 62.60 

FF 252,610 46.08 196,305 35.81 

BRAM 572 62.72 572 62.72 

DSP 1,230 48.81 1,182 46.90 

slice size 

40 

Previous 

Architecture 

[cycle] 

Proposed 

Architecture 

[cycle] 

Decrement in time  

[%] 

3x3 stride 2 3,333,343 1,874,684 43.75 

1x1 stride 1 6,687,978 4,808,235 28.10 

3x3 stride 1 902,352 680,120 24.62 

slice size 

20 

Previous 

Architecture 

[cycle] 

Proposed 

Architecture 

[cycle] 

Decrement in time 

[%] 

1x1 stride 1 3,023,724 1,811,685 40.08 

3x3 stride 1 228,334 140,124 38.63 
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