IDEC Journal of Integrated Circuits and Systems, VOL 6, No.3, July 2020

http://www.idec.or.kr

1b-16b Variable Bit Precision DNN Processor for Emotional
HRI System in Mobile Devices

Chang Hyeon Kim', Jin Mook Lee, Sang Hoon Kang, Sang Yeob Kim, Dong Seok Im and

Hoi-Jun Yoo?
Korea Advanced Institute of Science and Technology, School of Electrical Engineering (KAIST)
E-mail : 'ch.kim@kaist.ac.kr

Abstract - We propose an energy-efficient DNN processor
with the proposed look-up-table-based processing engine (LPE)
and near-zero skipper. A CNN-based facial emotion recognition
model and an RNN-based emotional dialogue generation model
are integrated for the natural human-robot interaction (HRI)
system, and it is evaluated by the proposed processor. LPE
supports 1 to 16 bit variable weight bit precision, and it achieves
57.6% and 28.5% lower energy consumption than the
conventional multiplier-accumulator (MAC) units in 1-16 bit
weight precision. Furthermore, the near-zero skipper reduces
36% of MAC operations and consumes 28% lower energy
consumption in facial emotion recognition tasks. Implemented
in 65 nm CMOS process, the proposed processor occupies
1784x1784 pm? areas and dissipates 0.28 mW and 34.4 mW at
1 frame-per-second (fps) and 30 fps facial emotion recognition
tasks.
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1. INTRODUCTION

The recent development of deep learning technology
enables machines to recognize the human user’s emotion
accurately with facial expressions [1] and dialogues [2].
Recent studies [3-5] try to adopt emotion recognition into
mobile devices, which allows machine to understand user’s
intend and enables more natural human-robot interaction. For
natural human-robot interaction (HRI), we newly introduce

an emotional HRI system for mobile devices, as shown in Fig.

1. It consists of three steps, face detection/alignments for face
region-of-interest (Rol) generation, CNN-based facial
emotion recognition (FER), and RNN-based emotional
dialogue generation (EDG). FER generates the user’s
emotion and it is fed to EDG with the user’s speech as an
input. EDG performs natural language processing and
outputs different dialogues corresponding to the user’s
emotional state. We optimized weight bit-precision of both
FER’s and EDG’s DNN models in order to realize real-time
operation. The optimized CNN model is quantized to 16 bit
fixed point weights in the input layer and 1 bit fixed point
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weights in the other layers, achieving <1% accuracy
degradation compared to 32 bit floating point weights.
Besides, the EDG model is trained using the reinforcement
learning method which uses 4 bit fixed point weights.

In this paper, an energy-efficient DNN processor has been
integrated, which supports variable weight bit precisions in
order to combine two different DNN models into a battery-
powered mobile device. We propose variable weight bit
precision DNN processor with an energy-efficient look-up-
table based processing engine (LPE). It fully supports 1 to 16
bit weight precision with binary multiplication optimized
LPE and bit-serial shifter. It consumes 57.6% and 28.5 % less
energy consumption compared with a conventional multiplier.
Furthermore, it supports near-zero skipping, which reduces
the average 36% multiplier-accumulator (MAC) operation
and 28% energy consumption in facial emotion recognition
tasks.

The rest of this paper is organized as follows. In Section
I, the overall architecture and the processing details of
building blocks are described. Section Il shows the
implementation results and measurement results. Section VI
provides a conclusion.

11. DETAILED BUILDING BLOCKS
A. Overall Architecture

Fig. 2 shows the overall architecture of the proposed
DNN processor. It consists of the preprocessing core, and the
LUT-based PE core (LP Core), which are connected with a
network-on-chip interface for communications. The pre-
processing core performs face detection and alignment for
face Rol generation, and the face Rol is transferred to LPE
core. Two 6KB output memories (OMEMSs) and 36KB
weight memory (WMEM) are integrated into the LP core.
When the activation of DNN is fed into the activation buffer,
the Near-zero detector bit-shifts activation data and skips the
MAC operation of the activations which are smaller than the
predefined threshold value. Four LPE clusters perform DNN
processing of the different input channels. Each LP cluster
consists of four LPEs, and each LPE includes 8-entry look-
up-table of four input activations and generates twelve
different output data using twelve 8-to-1 multiplexers. The
detailed explanation of LPE is described later. Twelve
outputs of four LPs and LP clusters are accumulated by
twelve 4-way add/sub trees. The bit-serial shifter performs


http://creativecommons.org/licenses/bync/3.0

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.3, July 2020

Face Face

Facial Emotion Recognition

m=)Detection )
&
Alignment Q J\
16b Normalized
User Weight  Binary Weight
Speech

http://www.idec.or.kr

Emotional Dialogue Generation

BiiEEs

Neut. Neut. Neut. Neut.

Speech + Emotion

Fig. 1. Emotional HRI System with Facial Emotion Recognition and Emotional Dialogue Generation Model

bit-serial multiplication for weight-bit scalable DNN
processing. The outputs are stored into OMEMs, and ping-
pong accumulation engine accumulates the partial-
summations of DNN.

B. LUT-based Processing Engine (LPE)

Fig. 3 explains the binary weight multiplication of LPE.
The outputs of LPEs are accumulated and shifted by the bit-
serial shifter for bit-serial multiplication. In the case of 1 bit
weight, 1-weights and O-weights represent addition and
substitution of activations, respectively. When LPE fetches
new input activations, the LPE updates the LUT with all the
combinations of the bit-serial multiplications between four
input activations and binary weights (A-step: LUT update).
Since each input activation is multiplied with output channel
size (Co) and kernel size (k) of weights, the entire Coxk
binary weight multiplications can be obtained by simple
indexing of the LUT (B-step: Calculation). To further reduce
the number of entries of the LUT, we exploit the
characteristic of 2’s complement. The total of 16
combinations can be divided into two parts, as shown in Fig.
3. The physical LUT contains 8-entries and stores
multiplication results of weight’s MSB equals one. The
logical LUT represents the multiplication results of weight’s
MSB equals zero, and is the full inversion of the physical
LUT that can be replaced by the half entries, eight 16 bit
registers, an inverter, and a multiplexer. Moreover, LPE
cluster controller reconfigures the data path of 4-way add/sub
trees. It calculates and stores the pre-calculated LUT entries
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Fig. 2. Overall Architecture

during the A-step, and accumulates and generates the indexed
outputs of four LPEs at B-step.

In Fig. 4, we simulated and analyzed the energy
consumption of LPE by the number of input activations per
LUT size (E) at 200 MHz, 1.1 V operating condition. The
normalized energy consumption is measured with the same
external memory bandwidth and the same throughput
condition. When the E becomes larger, the accumulation
power of LUT outputs becomes smaller, but the entry size of
LUT becomes exponentially larger. In our simulation, the
optimal size of E is four that we designed LUT with 8-entries.
In addition, because it is more efficient to index a single LUT
with multiple weights, we measured energy consumption by
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the number of parallel binary weight multiplications of LPE
(N). Finally, we determined the optimal size of E and N as
four and twelve. Therefore, twelve multiplexers are
integrated into an LPE, and an LPE cluster accumulates 4 x
12 parallel outputs with twelve 4-way add/sub tree.

With optimization of LPE, the bit-serial multiplication
method is adopted in order to realize the variable weight bit
precision of DNN. Fig. 5 explains the PE configuration at N-
bit weights. It sequentially calculates the addition and
substitution of input activations with multiplication results of
binary weights from the LSB to the MSB for N-cycles.
During the 2-16 bit multiplication, LPE controller
reconfigures the LPE that LUT stores all combinations of
three input activations as shown in Fig. 5. Then, Fig. 6
describes the energy consumption of LPE during the CNN
and RNN operation. As a result, LPE unit reduces the energy
consumption of 19.8% in CNN and 28.5% in RNN compared
with the conventional MAC units.

Fig. 7 shows the spatial and temporal data mapping of
LPEs for CNN processing. In beginning, an LPE cluster
fetches 16 input activations, which are the pixels of the same
coordinate but 16 different input-channels. Then, each LPE
updates LUT with 4 input activations (A-step). It takes 3-
cycles. After the LUT update step, LPEs fetch weights and
outputs the values of LUT by weights. At every cycle, LPE
fetches 4x12 weight, which are the kernels of the 4 different
input channels, 12 different output channels, but the same
coordinate. So, each LPE outputs 12 LUT values at every
cycle, and the 4-way add/sub-tree in LPE cluster accumulates

http://www.idec.or.kr

Weights
t t+1 t+N-1
(N=kernel Size)
OISR
Input . — ) \ . o
Activation % % % A
% x % >
y re1 S % % %
“ SIS
Z > } >
‘& LPE2 % % %
Il RN N A
CLK T ‘
e LUT Update
e A2 Woato AG2-AG7
LpE2 Wasno | = [Wosnn [
C'\n
LPE N IR - S N —
Allocated N s
CNN Tile . '
Input N Input . d
Activation Weight Output Activation Weight Output
(A)-LUT Update (B)-Calculation . )
3 cycle N-1 Cycle N=Kernel Size

Fig. 7. Spatial and Temporal Data Mapping of LPEs

the 4x12 outputs to 12 output. It takes kernel-size cycles.
After kernel-size cycles, there are no kernels to multiply with
input activations in LPE, that LPE fetches new input
activation in the same coordinate but 16 different input-
channels and repeat the above procedure. What if the input
activations within the same coordinate are fully processed,
the LPE fetches the new input activations in the next
coordinate.

The near-zero skipper is explained in Fig. 8. While the
input buffer fetches new input activations, near-zero-skipper
monitors input buffer and blocks the activations, smaller than
the threshold value. This threshold value is programmable
that can be varied through different layers of DNN. It simply
bit-shift the data in input-buffer to the right, and what if the
shifted data is O, it blocks the activations. In the case of
negative numbers, it inverses full-bits of the data before bit-
shift. Moreover, it skips the corresponding weights of the
blocked input activations. While processing the FER

Input Activations

S

B <Threshold J.

I <skipped WMEM WMEM L,
Loader m (36KB)

Fig. 8. Near-zero Skipping Method

Activations

Input Buffer

N=loga(Threshold)

Shift Right
N-bit

Near-Zero Skipping Ctrlr.




IDEC Journal of Integrated Circuits and Systems, VOL 6, No.3, July 2020

normalized binary weight CNN with FER2013 dataset [5],
the average skipping ratio is 36% with the threshold of 4 that
the overall power consumption is reduced by 28%.

1784um

1784um

Fig. 9. Chip Micrograph

11I. IMPLEMENTATION AND MEASUREMENT RESULTS

Fig. 9 shows the chip micrograph. The proposed
processor is fabricated with 65 nm 1P8M Logic CMOS
process with 1784 x 1784 um?2. It operates from 0.67-1.1V
supply voltage with 5-200 MHz clock frequency range. In the
case of facial expression recognition with weight-bit
precision optimized CNN, it consumes 0.28 mW and
34.4mW at 1fps and 30fps, respectively. For the emotional
dialogue generation tasks, it generates different outputs due
to the user’s emotional states. It consumes 56 mW and takes
1.36-second latency with four layered 8 bit weight GRU
model. The peak CNN power efficiency is measured as 13.6
TOPS/W at 0.66V, 5 MHz operating condition, and peak
RNN/FC power efficiency is measured as 15.7 TOPS/W at
the same condition with binary weight bit precision.

Fig. 10 describes the results of facial emotion recognition
with FER2013 dataset and the performance summary of the
proposed processor. Fig. 11 illustrates the performance of the
processor during testing the emotional dialogue generation
using RNN model. As a result, the proposed processor
successfully demonstrates both facial emotion recognition
and emotional dialogue tasks by accelerating the CNN and
RNN model efficiently.

111. CONCLUSIONS

We propose an energy-efficient DNN processor with a
LUT-based processing engine and near-zero skipper. A
CNN-based facial emotion recognition and an RNN-based
emotional dialogue generation model is integrated for the
natural HRI system and tested with the proposed processor.
LPE supports 1-16 bit variable weight bit precision with and
57.6% and 28.5% lower energy consumption than
conventional MAC arithmetic units for 1 bitand 16 bit weight
precision. Also, the near-zero skipper reduces 36% of MAC
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operation and consumes 28% lower energy consumption for
facial emotion recognition tasks. Implemented in 65nm
CMOS process, the proposed processor occupies 1784 x
1784 um?areas and dissipates 0.28 mW and 34.4 mW at 1fps
and 30fps in CNN-based facial emotion recognition task with
face detection and face alignment. Furthermore, for the RNN-
based emotional dialogue generation task, it consumes
56mW with 1.36-second latency. In conclusion, the 1b-to16b
fully variable weight bit precision low-power DNN processor
for <100mW natural HRI system is successfully realized for
mobile devices.
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Fig. 10. Facial emotion recognition test with FER2013 dataset and
performance summary
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Fig. 11. Emotional dialogue generation test and performance summary
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