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Abstract - We propose an energy-efficient DNN processor 

with the proposed look-up-table-based processing engine (LPE) 

and near-zero skipper. A CNN-based facial emotion recognition 

model and an RNN-based emotional dialogue generation model 

are integrated for the natural human-robot interaction (HRI) 

system, and it is evaluated by the proposed processor. LPE 

supports 1 to 16 bit variable weight bit precision, and it achieves 

57.6% and 28.5% lower energy consumption than the 

conventional multiplier-accumulator (MAC) units in 1-16 bit 

weight precision. Furthermore, the near-zero skipper reduces 

36% of MAC operations and consumes 28% lower energy 

consumption in facial emotion recognition tasks. Implemented 

in 65 nm CMOS process, the proposed processor occupies 

1784×1784 μm2 areas and dissipates 0.28 mW and 34.4 mW at 

1 frame-per-second (fps) and 30 fps facial emotion recognition 

tasks. 

Keywords— Deep learning, Deep learning ASIC, Deep neural 

network, Emotion recognition, Mobile deep learning 

I. INTRODUCTION

The recent development of deep learning technology 

enables machines to recognize the human user’s emotion 

accurately with facial expressions [1] and dialogues [2]. 

Recent studies [3-5] try to adopt emotion recognition into 

mobile devices, which allows machine to understand user’s 

intend and enables more natural human-robot interaction. For 

natural human-robot interaction (HRI), we newly introduce 

an emotional HRI system for mobile devices, as shown in Fig. 

1. It consists of three steps, face detection/alignments for face

region-of-interest (RoI) generation, CNN-based facial

emotion recognition (FER), and RNN-based emotional

dialogue generation (EDG). FER generates the user’s

emotion and it is fed to EDG with the user’s speech as an

input. EDG performs natural language processing and

outputs different dialogues corresponding to the user’s

emotional state. We optimized weight bit-precision of both

FER’s and EDG’s DNN models in order to realize real-time

operation. The optimized CNN model is quantized to 16 bit

fixed point weights in the input layer and 1 bit fixed point

weights in the other layers, achieving <1% accuracy 

degradation compared to 32 bit floating point weights. 

Besides, the EDG model is trained using the reinforcement 

learning method which uses 4 bit fixed point weights. 

In this paper, an energy-efficient DNN processor has been 

integrated, which supports variable weight bit precisions in 

order to combine two different DNN models into a battery-

powered mobile device. We propose variable weight bit 

precision DNN processor with an energy-efficient look-up-

table based processing engine (LPE). It fully supports 1 to 16 

bit weight precision with binary multiplication optimized 

LPE and bit-serial shifter. It consumes 57.6% and 28.5 % less 

energy consumption compared with a conventional multiplier. 

Furthermore, it supports near-zero skipping, which reduces 

the average 36% multiplier-accumulator (MAC) operation 

and 28% energy consumption in facial emotion recognition 

tasks. 

The rest of this paper is organized as follows. In Section 

II, the overall architecture and the processing details of 

building blocks are described. Section III shows the 

implementation results and measurement results. Section VI 

provides a conclusion. 

II. DETAILED BUILDING BLOCKS 

A. Overall Architecture

Fig. 2 shows the overall architecture of the proposed

DNN processor. It consists of the preprocessing core, and the 

LUT-based PE core (LP Core), which are connected with a 

network-on-chip interface for communications. The pre-

processing core performs face detection and alignment for 

face RoI generation, and the face RoI is transferred to LPE 

core. Two 6KB output memories (OMEMs) and 36KB 

weight memory (WMEM) are integrated into the LP core. 

When the activation of DNN is fed into the activation buffer, 

the Near-zero detector bit-shifts activation data and skips the 

MAC operation of the activations which are smaller than the 

predefined threshold value. Four LPE clusters perform DNN 

processing of the different input channels. Each LP cluster 

consists of four LPEs, and each LPE includes 8-entry look-

up-table of four input activations and generates twelve 

different output data using twelve 8-to-1 multiplexers. The 

detailed explanation of LPE is described later. Twelve 

outputs of four LPs and LP clusters are accumulated by 

twelve 4-way add/sub trees. The bit-serial shifter performs 
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bit-serial multiplication for weight-bit scalable DNN 

processing. The outputs are stored into OMEMs, and ping-

pong accumulation engine accumulates the partial-

summations of DNN. 

B. LUT-based Processing Engine (LPE) 

Fig. 3 explains the binary weight multiplication of LPE. 

The outputs of LPEs are accumulated and shifted by the bit-

serial shifter for bit-serial multiplication. In the case of 1 bit 

weight, 1-weights and 0-weights represent addition and 

substitution of activations, respectively. When LPE fetches 

new input activations, the LPE updates the LUT with all the 

combinations of the bit-serial multiplications between four 

input activations and binary weights (A-step: LUT update). 

Since each input activation is multiplied with output channel 

size (CO) and kernel size (k) of weights, the entire Co×k 

binary weight multiplications can be obtained by simple 

indexing of the LUT (B-step: Calculation). To further reduce 

the number of entries of the LUT, we exploit the 

characteristic of 2’s complement. The total of 16 

combinations can be divided into two parts, as shown in Fig. 

3. The physical LUT contains 8-entries and stores 

multiplication results of weight’s MSB equals one. The 

logical LUT represents the multiplication results of weight’s 

MSB equals zero, and is the full inversion of the physical 

LUT that can be replaced by the half entries, eight 16 bit 

registers, an inverter, and a multiplexer. Moreover, LPE 

cluster controller reconfigures the data path of 4-way add/sub 

trees. It calculates and stores the pre-calculated LUT entries 

during the A-step, and accumulates and generates the indexed 

outputs of four LPEs at B-step. 

In Fig. 4, we simulated and analyzed the energy 

consumption of LPE by the number of input activations per 

LUT size (E) at 200 MHz, 1.1 V operating condition. The 

normalized energy consumption is measured with the same 

external memory bandwidth and the same throughput 

condition. When the E becomes larger, the accumulation 

power of LUT outputs becomes smaller, but the entry size of 

LUT becomes exponentially larger. In our simulation, the 

optimal size of E is four that we designed LUT with 8-entries. 

In addition, because it is more efficient to index a single LUT 

with multiple weights, we measured energy consumption by 

 

Fig. 1. Emotional HRI System with Facial Emotion Recognition and Emotional Dialogue Generation Model 
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Fig. 2. Overall Architecture 
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Fig. 3. Detailed Binary Weight Multiplication of LPE 

 

 

 
Fig. 4. Energy Consumption of LPE with various number of entry size 

and parallel outputs. 
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the number of parallel binary weight multiplications of LPE 

(N). Finally, we determined the optimal size of E and N as 

four and twelve. Therefore, twelve multiplexers are 

integrated into an LPE, and an LPE cluster accumulates 4
12 parallel outputs with twelve 4-way add/sub tree.   

With optimization of LPE, the bit-serial multiplication 

method is adopted in order to realize the variable weight bit 

precision of DNN. Fig. 5 explains the PE configuration at N-

bit weights. It sequentially calculates the addition and 

substitution of input activations with multiplication results of 

binary weights from the LSB to the MSB for N-cycles. 

During the 2-16 bit multiplication, LPE controller 

reconfigures the LPE that LUT stores all combinations of 

three input activations as shown in Fig. 5. Then, Fig. 6 

describes the energy consumption of LPE during the CNN 

and RNN operation. As a result, LPE unit reduces the energy 

consumption of 19.8% in CNN and 28.5% in RNN compared 

with the conventional MAC units. 

Fig. 7 shows the spatial and temporal data mapping of 

LPEs for CNN processing. In beginning, an LPE cluster 

fetches 16 input activations, which are the pixels of the same 

coordinate but 16 different input-channels. Then, each LPE 

updates LUT with 4 input activations (A-step). It takes 3-

cycles. After the LUT update step, LPEs fetch weights and 

outputs the values of LUT by weights. At every cycle, LPE 

fetches 4× 12 weight, which are the kernels of the 4 different 

input channels, 12 different output channels, but the same 

coordinate. So, each LPE outputs 12 LUT values at every 

cycle, and the 4-way add/sub-tree in LPE cluster accumulates 

the 4× 12 outputs to 12 output. It takes kernel-size cycles. 

After kernel-size cycles, there are no kernels to multiply with 

input activations in LPE, that LPE fetches new input 

activation in the same coordinate but 16 different input-

channels and repeat the above procedure. What if the input 

activations within the same coordinate are fully processed, 

the LPE fetches the new input activations in the next 

coordinate.  

The near-zero skipper is explained in Fig. 8. While the 

input buffer fetches new input activations, near-zero-skipper 

monitors input buffer and blocks the activations, smaller than 

the threshold value. This threshold value is programmable 

that can be varied through different layers of DNN. It simply 

bit-shift the data in input-buffer to the right, and what if the 

shifted data is 0, it blocks the activations. In the case of 

negative numbers, it inverses full-bits of the data before bit-

shift. Moreover, it skips the corresponding weights of the 

blocked input activations. While processing the FER 

 

Fig. 5. 2b-to16b bit-serial multiplication using LPE results 

 

 

 
Fig. 6. Energy Consumption Comparison with Conventional MAC and 
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normalized binary weight CNN with FER2013 dataset [5], 

the average skipping ratio is 36% with the threshold of 4 that 

the overall power consumption is reduced by 28%. 

III. IMPLEMENTATION AND MEASUREMENT RESULTS 

Fig. 9 shows the chip micrograph. The proposed 

processor is fabricated with 65 nm 1P8M Logic CMOS 

process with 1784 1784 m2. It operates from 0.67-1.1V 

supply voltage with 5-200 MHz clock frequency range. In the 

case of facial expression recognition with weight-bit 

precision optimized CNN, it consumes 0.28 mW and 

34.4mW at 1fps and 30fps, respectively. For the emotional 

dialogue generation tasks, it generates different outputs due 

to the user’s emotional states. It consumes 56 mW and takes 

1.36-second latency with four layered 8 bit weight GRU 

model. The peak CNN power efficiency is measured as 13.6 

TOPS/W at 0.66V, 5 MHz operating condition, and peak 

RNN/FC power efficiency is measured as 15.7 TOPS/W at 

the same condition with binary weight bit precision.  

Fig. 10 describes the results of facial emotion recognition 

with FER2013 dataset and the performance summary of the 

proposed processor. Fig. 11 illustrates the performance of the 

processor during testing the emotional dialogue generation 

using RNN model. As a result, the proposed processor 

successfully demonstrates both facial emotion recognition 

and emotional dialogue tasks by accelerating the CNN and 

RNN model efficiently. 

III. CONCLUSIONS 

We propose an energy-efficient DNN processor with a 

LUT-based processing engine and near-zero skipper. A 

CNN-based facial emotion recognition and an RNN-based 

emotional dialogue generation model is integrated for the 

natural HRI system and tested with the proposed processor. 

LPE supports 1-16 bit variable weight bit precision with and 

57.6% and 28.5% lower energy consumption than 

conventional MAC arithmetic units for 1 bit and 16 bit weight 

precision. Also, the near-zero skipper reduces 36% of MAC 

operation and consumes 28% lower energy consumption for 

facial emotion recognition tasks. Implemented in 65nm 

CMOS process, the proposed processor occupies 1784 
1784 m2 areas and dissipates 0.28 mW and 34.4 mW at 1fps 

and 30fps in CNN-based facial emotion recognition task with 

face detection and face alignment. Furthermore, for the RNN-

based emotional dialogue generation task, it consumes 

56mW with 1.36-second latency. In conclusion, the 1b-to16b 

fully variable weight bit precision low-power DNN processor 

for <100mW natural HRI system is successfully realized for 

mobile devices. 
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Fig. 10. Facial emotion recognition test with FER2013 dataset and 

performance summary 

 

 

Fig. 11. Emotional dialogue generation test and performance summary 
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