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Abstract - In this study, we design a K-band CMOS variable 

gain amplifier (VGA) for beamforming system applications. 

The designed VGA consists of amplification and attenuation 

stages. The amplification stage consists of two common-source 

gain stages and has a power gain of approximately 18 dB in the 

simulation. In the case of the attenuation stage, it has a total of 

5-bit attenuation steps, and the attenuation range in the 

simulation is 31 dB. To suppress insertion loss, attenuation bits 

for low attenuation levels were designed in a distributed 

structure. On the other hand, attenuation bits for high 

attenuation levels are designed in a -structure to secure high 

attenuation levels. In addition, to suppress the phase error, tail 

capacitors are added to transistors used in the attenuation 

stage. The designed K-band VGA was manufactured using a 65-

nm RFCMOS process. The chip size of the designed VGA was 

0.65  0.50 mm2. At operating frequencies 22.0 GHz to 23.6 

GHz, the measured variable gain range was between 26.5 dB 

and 28.2 dB. In this case, the measured RFM phase and 

attenuation errors were less than 6.40 and 1.24 dB, 

respectively.  
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Ⅰ. INTRODUCTION 

With the development of 5G mobile communication 

technology, beamforming systems are in the spotlight as one 

of the main transceiver structures of wireless communication 

systems [1−4]. Such a beamforming system is expected to be 

adopted not only in 5G but also in 6G mobile 

communication, and attempts are being made to apply it to 

various applications [5−7]. 

With the introduction of beamforming systems, interest in 

functional circuits that can adjust the beam patterns of 

antennas, such as phase shifters, variable gain amplifiers 

(VGAs), and attenuators, is also increasing. In particular, 

VGAs and attenuators played a major role in typical 

transceiver systems for mobile communication, and their 

importance has increased further in beamforming systems 

[8−11]. For such VGAs, the variable gain range and RMS 

phase and gain errors are the main performance indicators. 

Similarly, for attenuators, variable attenuation ranges and 

RMS phase and attenuation errors are the main performance 

indicators. 

In this study, for the beamforming system in the flexible 

access common spectrum (FACS) applications [5−7], we 

designed a K-band CMOS VGA. In particular, we combined 

a gain amplifier and a digital step attenuator to 

simultaneously secure variable gain and variable attenuation 

function with a single integrated circuit (IC). In order to 

secure a sufficient gain, the gain amplifier was composed of 

two-stages. Here, in order to suppress the phase error due to 

the variation of the gain, a variable function was 

implemented only at the attenuation stage of the designed 

VGA. In addition, a digitally controllable attenuator was 

combined with a total of 5-bits to secure a sufficient variable 

gain range. To further suppress the phase error, tail 

capacitors were added to transistors used in the attenuation 

stage. 

Ⅱ. DESIGN OF THE K-BAND CMOS VGA 

In this study, in order to secure both variable attenuation 

and gain functions at the same time, the VAG consisted of 

two stages and a 5-bit attenuator, as shown in Fig. 1. Here, 

the operating frequency was set from 22.0 GHz to 23.6 GHz. 

As follows, the gain amplification stages were first 
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Fig. 1. Block-diagram of the designed VGS.  

 

 
Fig. 2. Schematic of the amplification stage. 
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described, and then the attenuator was described.  

 

A. Two stage gain amplifier  

As shown in Fig. 1, the proposed CMOS VGA consists of 

amplifiers and attenuators. Fig. 2 shows the schematic of the 

amplification stage constituting the designed VGA. The 

amplification stage is formed by connecting two common-

source (CS) structures. 

The gate bias voltages were applied through resistors, and 

the supply voltage, VDD was 1.0 V. The stability of the entire 

amplification stage was secured through RC feedback 

technique. A capacitor was added between the drain and 

source of the transistor to reduce the size of the load inductor, 

thereby suppressing power loss caused by the inductor and 

reducing the overall chip size. Other capacitors were used as 

the role of the dc blocking and for matching. Additionally, 

an additional series inductor was also used for input 

matching. RFOUT-AMP, which is an output signal of the 

amplification stage, becomes RFIN-ATT, which is an input 

signal of the attenuator. Specific values of the devices used 

in the amplification stage are shown in Table Ⅰ.  

 

B. 5-bit Attenuator  

The schematic of the 5-bit attenuator is shown in Fig. 3. 

In order to minimize insertion loss, the lower three bits were 

designed with a distributed structure. Thanks to the repeated 

structure of series inductance and shunt capacitance of the 

distributed structure, bandwidth degradation caused by the 

lower three bits was minimized [12−16]. In addition, 

compared to MA4 in Fig. 3 for 4 dB attenuation, MA1 for 1 

dB attenuation and MA2 for 2 dB attenuation are designed to 

have relatively small gate width. This means that the 

parasitic capacitances of MA1 and MA2 are smaller than that 

of MA4. Therefore, in order to reduce the chip area, the 

parasitic capacitances of MA1 and MA2 were regarded as an 

integrated capacitance from the perspective of the 

composition of the distributed structure. Through this, the 

inductor between MA1 and MA2 was removed for the 

configuration of the distributed structure. 

On the other hand, attenuators for attenuation of 8 dB and 

16 dB are designed in a -structure to secure high attenuation 

levels [17−19]. In general, the size of the shunt transistor in 

the -structure to secure a high attenuation level is designed 

relatively larger than that of the transistor in the distributed 

structure. Therefore, in the -structure, a phase variation 

occurs according to the attenuation level by a relatively large 

parasitic capacitance of the shunt transistor. In this study, to 

mitigate this, tail capacitors CT,8 and CT,16 were added as 

shown in Fig. 3. 

RFIN-ATT, which is an input signal of the amplification 

stage, is the same as RFOUT-AMP, which is an output signal of 

the amplifier. Specific values of the devices used in the 

attenuation stage are shown in Table Ⅱ. 

Ⅲ. SIMULATION RESULTS OF THE K-BAND CMOS VGA 

Fig. 4 shows the layout of the designed K-band CMOS 

VGA. The 65-nm RFCMOS process, which provides nine 

metal layers, was used. The areas of each of the amplification 

and attenuation stages are shown in Fig. 4. As shown in Fig. 

4, in consideration of the connection with other circuits 

constituting each transceiver channel of the beamforming 

system, the attenuation stage was arranged in a bent form. 

Therefore, in the case of the test chip shown in Fig. 4, the 

TABLE Ⅱ. Specific Values of the Devices Used in the Attenuation Stage. 

Device Value Device Value 

MA1 (m) 1.71) MA8S (m) 7.21) 

MA2 (m) 6.11) MA16S (m) 28.01) 

MA4 (m) 9.01) CT,8 (fF) 400 

MA8 (m) 401) CT,16 (fF) 800 

MA16 (m) 401) - - 
1) total gate width 

 

 
Fig. 4. Layout of the designed K-band CMOS VGA.  

 

TABLE I. Specific Values of the Devices Used in the Amplification Stage. 

Device Value Device Value 

MG1, MG2 (m) 401) CINT,BL (fF) 420 

CIN,SH (fF) 80 COUT,SH (fF) 23 

CIN,BL (fF) 420 COUT,BL (fF) 420 

CFB,1 , CFB,2 (fF) 107 RFB,1 () 1,028 

CINT,SH (fF) 17 RFB,2 () 771 
1) total gate width 

 

 
Fig. 3. Schematic of the attenuation stage.  
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chip size increased due to the empty space where no devices 

and signal lines were placed. However, in the actual 

transceiver channel for beamforming system, other circuits 

were placed in the empty space of the designed test chip 

shown in Fig. 4.  

A supply voltage VDD for the amplification stage is 1.0 V. 

In addition, the gate biases of the amplification stage, VCS,1 

and VCS,2, are 0.55 V and 0.60 V, respectively. Control 

voltages VA1, VA2, VA4, VA8, and VA16 for adjusting the 

attenuation level are 0 V and 1 V. These supply voltage, gate 

biases, and control voltages were used equally not only in 

simulation but also in measurement. 

To ensure the accuracy of the simulation, the effects of 

metal lines, inductors, and pads in the entire layout were 

considered through electromagnetic (EM) simulation. The 

target operating frequency range was 22.0 GHz to 23.6 GHz. 

Fig. 5 shows the simulation results of the S-parameters. 

The target values of S11 and S22 were less than −10 dB. In the 

21.0 GHz to 24.5 GHz range, which includes the target 

operating frequency range, both S11 and S22 were designed to 

be less than −10 dB. The degree of attenuation for each 

attenuation bit was confirmed from S21 of Fig. 5. The gain 

ranges at operating frequencies 22.0 GHz and 23.6 GHz 

were from 16.1 dB to −15.7 dB and 14.7 dB and −17.4 dB, 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Simulation results of S-parameters: (a) S11, (b) S22, and (c) S21. 
 

 
(a) 

 
(b) 

Fig. 6. Simulation results of phase and attenuation: (a) phase and (b) 
attenuation. 

 

 
(a) 

 
(b) 

Fig. 7. Simulation results of RMS errors: (a) RMS phase and (b) RMS 

attenuation errors. 
 

 
Fig. 8. Chip photograph of the designed K-band CMOS VGA.  
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respectively. As a results, the variable gain ranges at 

operating frequencies 22.0 GHz and 23.6 GHz were 31.8 dB 

and 32.1 dB, respectively.  

Fig. 6 shows the simulated phase and attenuation of each 

bit of the designed K-band CMOS VGA. At this time, Fig. 

6(b) shows the simulated attenuation compared to the 

highest gain according to the frequency of the designed 

VGA. Fig. 7 shows the simulated RMS phase and 

attenuation errors derived based on the simulation results of 

the phase and attenuation shown in Fig. 6. From Fig. 7, in 

the operating frequency range of 22.0 GHz to 23.6 GHz, the 

RMS phase and attenuation errors were less than 2.25 and 

0.22 dB, respectively.  

Ⅳ. MEASUREMENT RESULTS OF THE K-BAND CMOS VGA 

Fig. 8 is a chip photograph of the designed K-band CMOS 

VGA. The total chip size, including the test pads, is 0.65  

0.50 mm2. RF input and output signals were measured using 

an RF probe on the wafer. Ground, supply voltage, gate 

biases, and control voltages were applied using bonding-

wires.  

Fig. 9 shows the measurement results of the S-parameters. 

The target values of S11 and S22 were less than −10 dB. In the 

21.0 GHz to 30.0 GHz range, which includes the target 

operating frequency range, both S11 and S22 were designed to 

be less than −10 dB. The degree of attenuation for each 

attenuation bit was confirmed from S21 of Fig. 9. The gain 

ranges at operating frequencies 22.0 GHz and 23.6 GHz 

were from 13.0 dB to −14.9 dB and 11.6 dB and −16.6 dB, 

respectively. As a results, the variable gain ranges at 

operating frequencies 22.0 GHz and 23.6 GHz were 26.5 dB 

and 28.2 dB, respectively. 

Fig. 10 shows the measured phase and attenuation of each 

bit of the designed K-band CMOS VGA. At this time, Fig. 

10(b) shows the measured attenuation compared to the 

highest gain according to the frequency of the designed 

VGA. Fig. 11 shows the measured RMS phase and 

attenuation errors derived based on the measurement results 

of the phase and attenuation shown in Fig. 10. From Fig. 11, 

in the operating frequency range of 22.0 GHz to 23.6 GHz, 

 
(a) 

 
(b) 

Fig. 11. Simulation results of RMS errors: (a) RMS phase and (b) RMS 

attenuation errors. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Measurement results of S-parameters: (a) S11, (b) S22, and (c) S21. 
 

 
(a) 

 
(b) 

Fig. 10. Measurement results of phase and attenuation: (a) phase and (b) 

attenuation. 
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the RMS phase and attenuation errors were less than 6.40 

and 1.24 dB, respectively. The measured RMS errors were 

somewhat deteriorated compared to the simulation results. It 

is presumed that the main cause of deterioration is not only 

due to process variation, but also to the accuracy of 

electromagnetic simulation.  

As shown in Table Ⅲ, despite the wide range of gain 

variations, the measured RMS phase error characteristics are 

acceptable. 

Ⅴ. CONCLUSIONS 

In this study, a K-band CMOS variable gain amplifier was 

designed. In order to secure power gain, two common-source 

gain stages were designed. In addition, in order to vary the 

gain, a variable attenuation stage that can be controlled with 

a total of 5-bits was designed. The distributed structure and 

-structure were applied to the attenuation stage to suppress 

insertion loss and secure a wide variable attenuation range. 

The designed K-band VGA was fabricated using a 65-nm 

RFCMOS process. The chip size of the fabricated VGA was 

0.65  0.50 mm2. The variable gain range measured at 

operating frequencies 22.0 GHz to 23.6 GHz was from 26.5 

dB to 28.2 dB. In the same frequency range, the measured 

RMS phase and attenuation errors were less than 6.40 and 

1.24 dB, respectively. 
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