IDEC Journal of Integrated Circuits and Systems, VOL 9, No.3, July 2023

http://www.idec.or.kr

A Low Power Mixed Signal Convolutional Neural Network

for Deep Learning SoC

Malik Summair Asghar'~?, Syed Asmat Ali Shah!? and Hyung Won Kim':#
'Department of Electronic Engineering, Chungbuk National University, Cheongju, Korea.
2Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
E-mail: summair@chungbuk.ac.kr, syed@chungbuk.ac.kr, hwkim@chungbuk.ac.kr

Abstract - Convolutional Neural Networks (CNNs) are getting
fame due to their simpler design and higher performance.
However, CNNs suffer from a large area and power
consumption constraints. The multiply-and-accumulate
(MAC) unit, which performs the convolution operation inside
a CNN, consumes a significant amount of power consumption.
In this study, we propose a mixed-signal approach for
implementing analog MAC unit that can replace the digital
MAC unit in CNNs. The Analog MAC unit architecture is
constituted from binary weighted current steering digital-to-
analog (DAC) circuit and capacitors. A digital parallel interface
is designed to provide input image and filter values to the MAC
unit. To realize a complete CNN model a low-power analog-to-
digital (ADC) is then employed at the output to convert the final
value back to a digital value. When a 3x3 convolution is
performed, the analog MAC unit offers a 10.7% reduction in
area and a 59.2% reduction in power consumption compared
to its fully digital counterparts.

Keywords—Convolutional Operation, Analog Multiplier,
Neural Network Accelerator, Convolutional Neural Network.

I. INTRODUCTION

The inclusion of Artificial Intelligence (Al) in the Internet
of Things (IoT) promises new horizons while presenting
some challenges. Existing Al neural networks use CPU/GPU
hardware architectures, which are not feasible for IoT
applications with limited power. IoT applications, however,
have scarce energy source and thus require low-power
solutions to ensure the longevity of the devices [1].

Modern computational systems work by executing a
series of instructions and therefore are not suitable for
emulating massively parallel biological neural network-like
systems [2]. GPUs, on the other hand, offer some degree of
the parallelism and flexibility but are not optimized for
power efficiency, and simulation/emulation speed is still not
well suited for large number of connections of a neural
network [3].

Neuromorphic architectures are designed specifically to
mimic the natural biological neural network and tend to offer
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higher power efficiency and parallelism over the
conventional CPU/GPU  architectures [4]. Many
neuromorphic and acceleration systems exploiting SNN
[5][61[7][8] and CNN architectures [9][10][11] are presented
recently.

Convolutional Neural Networks (CNNs) deliver superior
performance at the expense of growing hardware costs and
power consumption. CNNs realize convolutional operations
using multiply-and-accumulate (MAC) units, which
consume most of the power. There is a trend towards the
exploration of low-power and high-performance neural
processing units or neural accelerators. Recent studies have
focused on developing accelerators for CNNs [12], which
attempt to improve the area, power consumption and delay
[13].[14] presents an architecture to achieve the inner-
product (MAC) calculation by employing a sigma delta
modulator (SDM) at the expense of area and power
overhead. Because the recurrent use of analog-to-digital
(ADCs) and digital-to-analog (DACs) converter makes them
more power and area hungry to process the data.

In [15] the authors proposed an analog neuronal
computation unit (ANU) for fully connected layer for a CNN
model. To elevate the process, voltage, and temperature
(PVT) variations the authors exploited the two pulse
generators incorporated in the ReLU-embedded voltage-to-
time converters (VTCs). By incorporating these additional
circuits to overcome linearity issues the proposed
architecture incurs complexity and additional power
consumption. Some researchers are exploring mixed-signal
approaches for CNNs [16][17], where some are integrating
the analog compute units directly with the image sensor.

In the digital domain, the convolutional operation is
performed by using multipliers and adders. For the
convolution to be performed, the number of multipliers
depends upon the number of filter values. Moreover, many
adders are required to integrate the output of multipliers.
Thus, digital MAC units occupy a huge area along with
higher power consumption. This area and power constraint

drifted the researcher’s interest to find the new paradigm of

Analog kernels for CNN, which can not only perform
convolution but can occupy very less area and consume less
power.

This paper presents and implements a MAC unit for a
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Fig. 1. Architecture of mixed-signal ACNN.

mixed-signal analog convolutional neural network (ACNN),
which directly expects digital inputs for weights/filter values
and image pixels. The proposed MAC unit can be adapted to
use in fully connected layers as well because of the simpler
and scalable design. The proposed architecture exploits the
idea of binary-weighted current steering DAC and simpler
current steering and accumulation circuits. Whereas the
architecture implemented in [15] is fully implemented on
chip starting with the on-chip image and weights memory.
To convert the input image to analog format DACs are
employed and then the converted analog voltage is provided
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Fig. 2. Architecture of Analog Convolutional Unit.
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Fig. 3. Mixed-signal multiply and accumulate, a) Current steering DAC
based multiplier, and b) Accumulator (current summing and integration).

to the MAC.

Section II explains the architecture of the proposed ACNN
and Analog Convolutional unit (ACU). Section III describes
the implementation of the individual design elements of the
proposed architecture. Simulation results and performance
analysis is carried out in section IV, followed by conclusion
in section V.

II. ANALOG CONVOLUTIONAL NEURAL NETWORK
A.  Architecture of ACNN

Fig. 1 shows the overall structure of mixed-signal ACNN
and the use of the analog convolutional unit (CU) to replace
a digital CU. The CU -contains n-multipliers, for a
convolutional layer with filter size n = Hpjjeer X Weiter -
The output of the n-multipliers is summed together by an
accumulator circuit. Finally, the output of the accumulator
circuit is converted to digital domain using an ADC [14].

B.  Architecture of Analog Convolutional Unit

Fig. 2 explains the overall architecture of the mixed-signal
ACNN implementation. It consists of a single analog
convolutional unit (CU) to replace the digital CU. The output
of the multipliers is summed together by an accumulator
circuit comprising of a configurable capacitors array. Finally,
the output of the accumulator is converted to a digital value
using an ADC.

III. DESIGN AND IMPLEMENTATION
A.  Multiply and Accumulate Unit.

As the proposed Architecture aims to replace a digital CU,
the inputs are digital and need to be converted to analog. Fig.
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3 (a) shows the multiplier unit with digital inputs and analog
output. The multiplier tightly integrates two current steering
DAC:s, for operands A and B. The first (Ieft) DAC is supplied
with a fixed bias voltage, and generates an output current [A,
which is proportional to the digital code for operand-A. A
current mirror circuit is used to generate bias voltage for the
second DAC, based on the output of the first DAC. As a
result, the current generated by the second (right) DAC is
proportional to the product of operands A and B. Finally, the
output current of the second DAC is converted to voltage
using M19.

The accumulator circuit used with the multipliers is shown
in Fig. 3 (b). The accumulator circuit takes output voltages
from n-multiplier units and converts them into
corresponding currents. These currents are summed together

at node 'x’, which is used to charge the accumulation

capacitor Cpcc . Before the start of a computation, the
accumulation capacitor is discharged through a MOSFET, by
applying the reset signal.

B.  Implementation of ACNN

For proof of concept, a 3x3 CU is implemented with 4-bit
multipliers is implemented in CMOS 65nm library using
Cadence Virtuoso design tool. A single 4-bit multiplier
layout is shown in Fig. 4(a). Each of the DAC in the
multiplier is constructed by placing 15-unit cells in a matrix
structure, to ensure better matching compared to a simple
binary-weighted DAC. The complete MAC unit, which
contains nine multipliers, and one accumulate circuit, is
shown in Fig. 4(b).
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Fig. 5. Simulation results showing multiplier operand values, multiplier
output current, sum output current, and accumulator output voltage.

IV. RESULTS AND DISCUSSIONS
A. Performance Analysis of MAC

To verify the operation of the CU, we simulated the MAC
unit (excluding the ADC), and the results are illustrated in
Fig. 5. For simulations, a bias voltage of 250 mV is applied
to the multipliers, while the supply is 1 V. Here, an
incrementing digital code is applied, which is shared among
all the operands of all the multipliers. The output current
from operand-A of the first multiplier is shown in Fig. 5(a),
which closely tracks the applied digital code.

Fig. 5(b) shows the output current I,.p of the first
multiplier, and the digital product of operands A and B. It can
be observed that upon applying the digital code, the output
current rapidly transitions to a value that closely matches the
product of operands A and B.

Finally, Fig. 5(c) plots the sum of multiplier currents,

i

observed at node x' of Fig. 3(b). This sum of currents

charges the accumulation capacitor to reach the final value
that represents the output of the MAC and matches with the
digital equivalent result. The final accumulation capacitor
voltage when compared to the digital MAC results, reveals
a mean error of 2.83% with a peak of 5.34%. Due to the
limited dynamic range of the integrated 8-bit ADC, the
accumulation capacitor’s voltage range is intentionally
limited from 0 to 800 mV.

The simulation results for one CU are shown in Fig. 6.

Here, one CU performs four iterations of MAC operation
with four input images and weight values. For the first
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Fig. 6. Simulation results for 1 CU iterating four times.
TABLE I. Area and Power Consumption of a 3x3 Convolutional Unit (CU) TABLE II. Performance comparison of Convolutional Unit
Digital CU Mixed-Signal CU Parameter AR(iIS{ON This Work
Mult. & Acc. ADC Total [15]
Area 1400 pm? 535 pm> 715 um? | 1250 pm> Technology(nm) 28 65
Power 43.11 pW 15 pW 2.6 uW 17.6 pW Resolution(bits) 5(weight) 4(\yelght)
4(Input) 4(input)
iteration in the simulation, the three channels of input image Clock Frequency (MHz) 200 200
and filter have a maximum value of 15 applied to the one Area (mm?) 0.003375 0.000535
CU. At the start accumulation signal, the first channel’s value
. K . . Power(uW) 177 15
will be provided to the CU, and the equivalent voltage will
be charged upon the capacitor (red waveform). The second Throughput (GOPS) 892 1.8
and third channel values will be provided, respectively, and Energy Efficiency 5 120
the capacitor voltage will be charged, respectively. Once (TOPS/W)

accumulation is finished then, the start ADC signal will start
analog to digital conversion. For verification purposes, an
ideal DAC is employed to convert digital values back to
analog. For the respective digital value, the ideal DAC
voltage is shown in the purple waveform. Similarly,
subsequent iterations will be performed.

B.  Area and Power Consumption Comparison.

Table I compares the proposed and conventional (digital)
3x3 CU in terms of area and power. In addition, it lists the
area and power consumption of the main blocks of the
proposed CU. The equivalent digital circuit is implemented
in Verilog and synthesized using Synopsys Design compiler
for area and power estimates. When including the ADC, the
proposed CU offers a 10.7% reduction in the area compared
to the digital implementation. The proposed CU offers
higher benefits in terms of power consumption, reducing it
by 59.2 % when compared to the equivalent digital
implementation. Benefitting from the above-mentioned area
and power the proposed CU can be easily replaced for the
conventional digital CUs.

Table II compares the performance of the proposed
mixed-signal CU with the other state of the art analog CNN

processor [15]. The implementation in [15] integrates an
analog neuronal computational unit (ANU) with an analog
memory, on-chip registers, DACs, and ADCs. The analog
data path of [15] consists of a total of 1008 processing
elements. For a fair comparison the area and power
consumption of [15] are normalized to a single ANU having
nine MAC units. The proposed CU consisting of 9 MACs
(without ADC) occupies 6x less area as compared to the one
ANU of [15]. Moreover, the proposed CU (without ADC)
achieves 2x times more GOPS and hence is 24x more energy
efficient than [15]. The compact design of the proposed
analog CU is suitable for low-power mobile applications and
can be scaled easily to various CNN models.

V. CONCLUSION

This paper proposed a mixed-signal MAC unit for use as
a replacement of digital MAC, in a convolutional unit (CU).
The proposed CU offers promising benefits in terms of area
and power consumption compared to a digital
implementation. The proposed CU employs an ADC to
convert accumulation results to digital. The proposed
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architecture can be extended to include pooling operation in
the analog domain, thereby reducing the number of ADCs
and improving the speed. Moreover, the circuit can be
modified to enable an analog input image directly from an
image sensor, for applications where the input is acquired
directly from the analog sensor.
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