
IDEC Journal of Integrated Circuits and Systems, VOL 9, No.1, January 2023                                                            http://www.idec.or.kr 

 

A Self-Powered Gas Sensor Integrated Circuit 

Based on Photovoltaic Energy Harvesting 
 

 

Phan Dang Hung1 and Min Kyu Jea 
 Department of Electrical Engineering, Korea Advanced Institute of Science and Technology 

E-mail : 1hungphandang@kaist.ac.kr 

 

 
Abstract - A self-powered gas sensor integrated circuit (IC) 

suitable for wireless sensor nodes is designed in 0.18 μm CMOS 

process. The novel idea of using the output of the photovoltaic 

(PV) cell covered by the gas-sensing film allows the proposed 

sensor system to have low power consumption and compact 

size. A dual-input shared-inductor boost converter is used to 

harvest energy efficiently from two PV cells instead of 

connecting these cells in parallel when the system is exposed to 

gases. This shows up to 11% improvement of conversion 

efficiency at 2% H2 gas concentration. Maximum end-to-end 

efficiency of 88% is achieved at an output power of 3 mW, and 

the quiescent current is only 289 nA. An input-offset-storage 

autozeroing technique is used for opamp offset cancellation to 

achieve high-accuracy gas detection. A modified split-capacitor 

digital-to-analog converter (DAC) architecture is used for 

achieving a small area in the signal-processing block. 
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I. INTRODUCTION 

Gas leak is one of the biggest challenges that many 

workplaces are facing because it leads to severe health 

problems. Therefore, it is very important to detect the 

existence of toxic gases for the healthcare applications. 

Wireless Sensor Nodes (WSN), which consist of a sensing 

unit, a wireless transceiver, and a battery, can be used to 

measure the gas condition of many points in the workplace. 

Because battery life is the main issue in the WSN, energy 

harvesting systems are developed to increase the autonomy 

of the nodes. However, it is very difficult to make a compact 

node because an energy harvesting unit (EHU) is required to 

harvest energy from energy sources. Thus, it is very 

propitious to reduce the size of EHU while making it operate 

as long as possible. In addition, many kinds of gas sensors 

are bulky and power-hungry as they require local heating for 

sensing operation. 

As an alternative for lower power consumption, 

colorimetric sensors have been developed. Fig. 1 shows a 

 

Fig. 1. Structure of colorimetric sensor [1] 
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Fig. 2. Configuration of the portable gas sensing device [1] 
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Fig. 3. Principle configuration of self-powered gas sensor [2] 
 

structure of the colorimetric sensor which consists of a gas-

sensitive layer and a polymer layer. When the sensor is 

exposed to gases, the sensing material reacts with the gas, 

and the color of the gas-sensitive layer is changed. Fig. 2 

shows a configuration of the gas sensing device used to 

measure gas concentration based on the change of color. An 

LED generates light, and the photodiode (PD) measures the 

amount of light passing through the sensor. 
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Fig. 3 shows the working principle of an improved 

colorimetric gas sensor [2]. A PV cell is covered by a Pd-

polyurethane acrylate (PUA) nanograting sensor film [2]. 

Before gas exposure, the sensor film is transparent. After gas 

exposure, the color of the sensor film is changed. That is, the 

light transmission is changed when the light comes to the 

film. The light transmission change during H2 exposure is 

detected by measuring the short-circuit current (ISC) or 

open-circuit voltage (VOC) output of the PV cell because the 

transmission change is in proportion to the current or voltage 

change. 

The most important improvement of this sensor is that this 

sensor generates power itself and does not need the LED and 

PD when ambient light is enough. In addition, its size is 

small because this sensor does not require external 

components such as PD. As a result, this colorimetric gas 

sensor is well-suitable for gas sensing WSN due to its energy 

harvesting characteristics and small size. 

We propose an IC which measures H2 exposure using 

energy generated by this sensor itself. In addition, this sensor 

can be used in insufficient ambient light conditions when our 

IC and an LED are used. The power consumption of LED is 

minimized by turning on the LED only for a short time 

required for gas measurement. 

II. CIRCUIT IMPLEMENTATION 

Fig. 4 and Fig. 5 show the configuration and operation 

scenario of the system, respectively. Our IC measures the 

change of VOC before gas exposure and after gas exposure 

(ΔVOC) to detect H2 exposure because ΔVOC is in 

proportional to H2 exposure as shown in Fig. 6. 
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Fig. 4. Simplified system configuration 

 
 

Fig. 5. Operation scenario of the system 
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Fig. 6. Relationship between H2 concentrations and the voltage change 

When the ambient light is sufficient, energy is transferred 

from the PV cell to the battery while the LED is off. A 

fractional open-circuit voltage (FOCV) maximum power 

point tracking (MPPT) method is used to regulate the PV to 

the maximum power point, which allows the energy 

harvesting system to achieve the highest efficiency [3]. In 

this condition, H2 exposure can be obtained by measuring 

VOC. Although the gas sensor does not need an LED and a 

backup battery when the ambient light is sufficient, our 

system uses an LED and a backup battery to measure H2 

exposure in dark conditions. By turning on the LED to 

supply the light for the PV cell, our system still has VOC for 

gas sensing. 
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Fig. 7. Boost converter and LED controller circuits with MPPT 

 

 
Fig. 8. Gas signal processing diagram 

 

Fig. 7 shows the boost converter and LED controller 

circuits with MPPT. The system comprises a PV cell covered 

by the sensor film (PV_gas) and a reference PV cell (PV_ref) 

to conduct differential gas sensing. VIN is the input of the 

boost converter, which consists of an inductor, a low-side 

NMOS power switch, and a high-side PMOS power switch. 

VIN is selected between VPV_ref and VPV_gas based on the 
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available energy on two PV cells. The MPPT block samples 

a fraction of VOC on two PV cells and hold it on the capacitor 

CH. One of the comparators is used to compare VPV_ref 

(VPV_gas) and Vmpp_ref (Vmpp_gas) for MPPT, and the other 

compares VOUT/3 and Vmax for detecting the full-charged 

load battery. Dynamic comparators are adopted for low 

power consumption. The on-time generator is used for 

building up inductor current by pulling VM1 high in an on-

time period ton = 1 μs to turn the low-side power switch M1 

on. The off-time generator is used for transferring inductor 

current to BATLoad by pulling VM2 low that turns M2 on in 

an off-time period toff [4]. At VS&H CLK rising edge, if 

VPV_ref < Vmin (low ambient light condition), VM3 is 

pulled low to turn M3 on that allows BATBkup to supply for 

the LED. Thus, the PV cells are supplied by the LED light to 

perform gas sensing. 

Fig. 8 shows the gas signal processing block which 

consists of an opamp voltage subtractor and a 10-bit SAR 

ADC. The subtractor is used to subtract k × VOC_ref and k × 

VOC_gas for detecting the voltage change on the PV cells (k = 

0.8 for our used PV cell characteristic). A 10-bit ADC is 

required to sense H2 exposure from 0.1% to 2%. The SAR 

architecture in [5] is adopted for low power consumption. 
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Fig. 9. Die micrograph 

III. RESULTS AND DISCUSSIONS 

A. Measurement setup 

The chip micrograph is shown in Fig. 9, the active area is 

0.435 mm2. Fig. 10 shows the measurement setup for the gas 

test. The gas sensor consisting of the PV cell covered by the 

sensor film with a Pd thickness of 110 nm and deposition 

angle of 45° is placed in a gas chamber, and the ambient light 

inside the chamber is controlled by the LED. H2 gas is mixed 

with a synthetic air (i.e., a mixture of N2 and O2), and the 

concentration of the target gas is controlled by a mass flow 

controller. The chip is used to take power and gas signals 

from the output of two PV cells. The ADC output is read by 

a logic analyzer connected to a computer. 

 

B. Measurement results 

In an energy harvesting (EH) system, it is important to 

provide high end-to-end efficiency (ηend-to-end) that is the 

quotient of output power on the load battery (Pout) and 

maximum available power on two PV cells (Pmpp) [6]. As 

shown in Fig. 11, the EH circuits using a dual-input shared-

inductor boost converter achieves a peak end-to-end 

efficiency of 88% and maintains the efficiency of more than 

75% from 100 μW to 4 mW thanks to the offset cancellation 

technique used for the off-time comparator. The difference 

between the simulated and measured end-to-end efficiencies 

increases when output power becomes higher because the 

conduction loss from the boost converter increases. 
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Fig. 10. Measurement setup 
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Fig. 11. Dual-Input Shared-Inductor Boost Converter End-to-End 

Efficiency 
 

Fig. 12 shows the EH efficiency with the different gas 

concentrations. The higher the gas concentration is, the 

lower the efficiency becomes in both dual-input and single-

input converter structures because the output power of 

PV_gas decreases. However, the dual-input shared-inductor 

converter shows up to 11% end-to-end efficiency 

improvement at 2% H2 concentration compared to the single-

input converter with two PV cells connected in parallel. 
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Fig. 12. End-to-End Efficiency with the different gas concentration 

 

From the real-time gas sensing test, the ADC output code 

that is in decimal digits obtained with varying H2 

concentrations (0.1%, 0.5%, 1%, 1.6%, and 2%) are shown 

Fig. 13.  

Table I shows the performance summary and comparison 

to other designs. This work achieves competitive EH 

performance while providing embedded gas sensing 
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function. Thanks to integrating the sensor film with the PV 

cell, the gas sensor can be self-powered and only requires 1.2 

μW for GSP, unlike other sensors. The sensor size is only 25 

mm3
 as the sensor film is thin and does not require local 

heating. 
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Fig. 13. Measured sensor sensitivity 

IV. CONCLUSION 

An IC for photovoltaic energy harvesting and colorimetric 

H2 gas sensing is presented. The dual-input inductor-shared 

boost converters are used for harvesting power from two PV 

cells after gas exposure. In addition, split-capacitor DAC 

architecture are adopted to occupy small area. The IC is 

designed by 0.18μm CMOS process. The boost converter 

achieves high peak efficiency of 88% with low quiescent 

current of 289nA. The dual-input shared-inductor boost 

converter shows efficiency enhancement of 11% at 2% H2 

gas concentration. Gas sensing interface circuit with on-chip 

offset calibration had low offset of 500μV and consumed low 

power of 1.2μW. 10-bit SAR ADC could measure H2 

exposure from 0.1% to 2%. Our proposed IC is well suitable 

for wireless sensor networks which senses H2 exposure in 

indoor workplaces due to its high efficiency energy 

harvesting characteristic and small number of external 

components. 
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