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Abstract — The Discrete Cosine Transform (DCT) is often
applied in a sliding window setting. While sliding DCT (SDCT)
algorithms take advantage of the computational redundancy
inherent from the overlap between consequent processing
windows, the recursive computation nature imposes a
fundamental limit on realizable throughput. This study
presents a high-throughput FPGA implementation of the SDCT
algorithm using look-ahead pipelining. A look-ahead
transformation of degree two is applied to the original SDCT
recursion formula resulting in a threefold reduction of the
iteration bound. The resulting maximum clock frequency on a
Xilinx FPGA device is increased 2.1x (from 58.4 MHz to 123.4
MHz) by carefully retiming the look-ahead pipeline registers
and inserting additional pipeline registers in feed-forward
cutsets of the signal-flow graph.

Keywords—Discrete cosine transform, Field programmable
gate array, Look-ahead pipelining

1. INTRODUCTION

The Discrete Cosine Transform (DCT) is one of the most
widely used digital signal processing technique with many
useful properties such as self-orthogonalization and energy
compaction, which follows from the fact that DCT closely
approximates the optimal Karhunen-Loeve transform [1].
Furthermore, its data independent nature has led DCT to be
utilized in various fields including audio signal processing,
image processing, spectral analysis, and adaptive signal
processing [2]-[4].

DCT is often applied in a sliding window setting like other
signal processing algorithms [5]. Some examples of sliding
DCT (SDCT) include spectral analysis of non-stationary
data and transform domain adaptive filtering [4]. In sliding
window processing, a window of fixed size is shifted one
sample at a time over the input domain sequence x(n) as
shown in Fig. 1. While fast DCT algorithms of complexity
O(Nlog N) [6] that are similar to the fast Fourier transform
exist, they do not take advantage of the inherent redundancy
due to data overlap between consequent processing
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Fig. 1. Sliding window processing.

windows. The SDCT algorithm [4] utilizing this inter-
window dependency results in recursive computations and is
usually more efficient [7]-[10].

An important drawback of the SDCT algorithm as well as
other recursive algorithms is that the inherent iferation
bound [11] prevents arbitrary pipelining and restricts high
throughput implementations for single data-stream
applications. However, this limit can be overcome by using
the look-ahead transformation technique that has been used
in implementing infinite impulse response (IIR) digital
filters [11]. This approach is orthogonal to the various
formulations found in the literature targeting reduced
computation [7]-[10].

In this paper, we present a high-throughput FPGA
implementation of the SDCT algorithm using look-ahead
pipelining. In section II, the look-ahead transformed SDCT
algorithm is shown after the original SDCT algorithm,
together with various design details. FPGA synthesis results
and analytical discussions are given in section III, which is
followed by concluding remarks in section IV.

1. DESIGN METHODOLOGY

A. Sliding DCT algorithm
M-point DCT is defined as follows [4]:

- (i+1/2)
X =k Z x(i) cos (w)

- M

for m =0, ..., M — 1, where the constant
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Fig. 2. Block diagram of the SDCT algorithm.

_ (12, m=0
Fem { 1, otherwise 2)
This particular form is referred to as DCT-II, and is the most
commonly used DCT type among several variants.

In the sliding window setting, the SDCT sequence
corresponding to the M-point input domain sequence
[x(n),x(n —1),..,x(n — M + 1)] becomes

Xm(n) =
S mi-n+M-1/2)m\ )
ko x(i) cos .
, M
i=n—-M+1
After some manipulation [4], we get
1 myasm/2
Xm(n) = Ekm(_l) VVZM Pm(n) (4)
where the constant
j27r)
= - 5
Waom = exp ( M)’ (5)
and
Pn(n) = P () + PP (n) (©)
with the following recursions:
P (m) = Wi P (n — 1) -
+x(n) — (=D)™"x(n — M),
PD@) = WalRP (n — 1) ®

+W2‘,\,,m(x(n) —(—1D)™x(n— M)).

Fig. 2 denotes the block diagram representation of the
SDCT algorithm. Note that a multiplicative factor S is
applied to each z~! operation [4]. The raw SDCT with
p =1 is marginally stable due to the position of its poles
exactly on the unit circle in the z-plane. Round-off errors
may cause instability by pushing the poles outside the unit
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circle. Choosing a suitable S <1 can alleviate this
problem by shifting the poles slightly inside the unit circle,
with small approximation errors. Equation (7) and (8) are
modified accordingly as follows:

PP (n) = pWHPY (n — 1)

)
+x(n) — M (=D™x(n — M),

PP (n) = BW5 PP (n — 1)

(10)
+War' (x(m) = BY(=D)™x(n — M)).
Note that the left-front part of Fig. 2 computing the common
x(n) — (=1)™x(n — M) expression can be shared within
the groups of even and odd values of the transform domain
index m.

The iteration bound of the SDCT algorithm is easily
identified to be the sum of one (real) multiplication delay and
two addition delays, since the computational path through
complex multiplication consists of one multiplication and
one addition. Throughput or sample rate higher than this
iteration bound is infeasible no matter what amount of
pipelining is applied.

B. Look-ahead transformation

The look-ahead transformation technique [11] has been
used in implementing IIR digital filters to reduce their
iteration bound. It can be applied to SDCT as well since
SDCT shares the recursive computation structure with IIR
filters.

The recursion formulas (9) and (10) are expanded two
times as follows:

B (n) = BPwrpP (n - 3)
+x(n) — B (=1)™x(n — M)

11
+BW (x(n — 1) = BM(~1)™x(n — M — 1)) (a
+B2WER (x(n — 2) — BM(~1)™x(n — M — 2)),
PP () = BPW;im PP (n - 3)
+ Wit (x(n) — BM(—1)™x(n — M))
(12)

+pWim(x(n— 1) = M (-D)™x(n — M — 1))
+p2 W™ (x(n — 2) — BM(=1)™x(n — M — 2)).

Comparing the resulting block diagram shown in Fig. 3 to
the original block diagram in Fig. 2, it is easily seen that the
number of delay elements in the critical loop has increased
from one to three, which is due to the two-time expansion
applied in the recurrence relations (11) and (12). Since the
combinational computation delay along the critical loop
remains the same, the resulting iteration bound decreases
threefold, hence a three-time increase of potential
throughput.
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Fig. 3. Block diagram of the SDCT algorithm with look-ahead
transformation of degree two.

C. Design details

A pipeline architecture of the SDCT algorithm with look-
ahead transformation has been designed and is shown in Fig.
4. A total of eight pipeline stages are introduced to enjoy the
reduced iteration bound and achieve high throughput. Four
pipeline cuts are inserted each in the upstream and
downstream of the critical loop. Note that two among the
three delay elements in the critical loop are retimed in the
forward direction. Furthermore, redundant delay elements
are merged into the delay elements with identical input-
output connections.

While two delay elements are shown together after the
fully complex multiplication operations in Fig. 4, one is
actually placed inside the complex multiplication—between
the real multiplication and addition. Overall, to achieve high
throughput, every pipeline delay element is placed such that
no more than a single real arithmetic operation is performed
between each connected delay element pair.

Fixed-point bit widths for every signal are also indicated
in the block diagram using the Q notation. For example, Q7.8
means a total bit width of 15 with seven bits for the integer
part including the sign bit, and eight bits for the fraction part.
The fixed-point configuration inside the complex multiplier,
between the real multiplier and adder, simply follows that of
the complex multiplier output.

Saturation and rounding are applied whenever required.
Saturation arithmetic is chosen since wrapping around for

I —

?{H

http://www.idec.or.kr

overflows and underflows usually results in notable
performance degradation in many communication and signal
processing applications. Rather than simple truncation,
convergent rounding is performed to suppress quantization
noise bias; numbers are rounded to the closest representable
number with precedence of even numbers in the case of tie.
Further fine grain retiming is performed to minimize the
negative impact of saturation and rounding on the critical
path delay.

I1l. RESULTS AND DISCUSSIONS

The designed SDCT look-ahead pipeline architecture has
been implemented on a Xilinx Artix-7 FPGA device,
xc7a200tlfbg484-2L, using Vivado software. Only synthesis
is performed since the designed SDCT is a subblock of a
larger system with a more IO ports than the target device
pins.

For comparison purposes, a conventional SDCT pipeline
architecture has also been designed, which is shown in Fig.
5. Two pipeline stages are introduced to improve throughput
and reveal the computational loop that determines the
iteration bound as the critical path of the design.

Synthesis timing results, denoted in Table I, show that the
critical path delay is reduced from 17.2 ns to 8.1 ns, and the
maximum clock frequency increases accordingly from 58.3
MHz to 123.4 MHz. The aforementioned potential threefold
improvement in the iteration bound is only possible for both
zero clock-to-q delay and setup time. Considering the actual
nonzero clock-to-q delay and setup time, together with the
practical constraints in placing the pipeline registers, the
resulting 2.1x throughput improvement is considered quite
reasonable.

FPGA resource allocation results are denoted in Table II.
Overhead incurred by look-ahead pipelining can be seen.
The number of slice registers increases significantly. In
addition to the higher degree of pipelining, this is due to fine
grain retiming of the pipeline registers after real
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Fig. 4. Block diagram of the designed SDCT architecture with look-ahead transformation; pipelining and retiming also applied.



IDEC Journal of Integrated Circuits and Systems, VOL 9, No.1, January 2023

Fan
WY,
S B0 <[}
aWay T

4 Lo s
a1

uax Ji”x
@ N

Fig. 6. Block diagram of the conventional SDCT pipeline architecture.
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Table I. Critical path delay and throughput comparison.

Conventional SDCT with
SDCT pipeline look-ahead pipeline
Critical path delay 17.2 ns 8.1ns
Throughput 58.3 MHz 123.4 MHz

Table 1. Allocated FPGA resource comparison

Conventional SDCT with
SDCT pipeline look-ahead pipeline
Slice LUTs 15380 22653
Slice registers 1907 18350
DSPs 244 268

multiplications. These registers have been placed in front of
the convergent rounding operations auxiliary to the
multiplication operations—where bit widths are large—to
maximally balance the delay of register-to-register paths.
The numbers of slice look-up tables (LUTs) and digital
signal processing (DSP) blocks, however, increase only
moderately. Although the number of multiplication
operations incurred by look-ahead transformation is large,
each such multiplier in Fig. 4 has one multiplicand constant
and the other multiplicand common with a large number of
other multipliers. This computational structure is identical to
the multiplier block structure of transposed form finite
impulse response (FIR) filters, which is highly redundant
and can be significantly optimized by FIR filter synthesis
techniques [12]. It is supposed that Vivado software has
taken advantage of this optimization opportunity.

As each logic slice of an Artix-7 device contains four
LUTs and eight flip-flops [13], the required logic slice
counts of the conventional and proposed design are 3845 and
5664, respectively. Considering only these logic slices,
together with the critical path delays, the area-delay product
(ADP) shows a 1.44x improvement. Since the ADP
improvement considering only DSP slices is 1.93x, the total
ADP improvement can be determined as a number between
these two, depending on the area ratio of logic and DSP
slices.
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Fig. 7. DCT simulation results for white Gaussian test input; (a) X;(n) (b)
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Fig. 5. Fixed-point RMSE of conventional SDCT and look-ahead
transformed SDCT.

Fig. 6 shows some simulation results on white Gaussian
test input data. Block DCT refers to DCT processing
according to (1), i.e., without sliding window recursions.
This simulation is done in floating-point MATLAB, in order
to be used as golden reference. HDL fixed-point simulation
of the designed SDCT look-ahead pipeline architecture as
well as fixed and floating-point conventional SDCT
simulations are well verified to be correct.

Comparison of fixed-point accuracy of the conventional
SDCT and the look-ahead transformed SDCT architectures
is denoted in Fig. 7. Root-mean-square error (RMSE)
relative to floating-point SDCT is calculated, with mean over
all transform domain indexes. Interestingly, the look-ahead
transformed SDCT shows much lower RMSE than the
conventional SDCT. This RMSE margin can be used to
reduce the required FPGA resource of the look-ahead SDCT
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pipeline architecture by reducing fixed-point bit widths, or
to improve throughput even further by employing a simpler
rounding scheme such as rounding half up toward positive
infinity.

IV. CONCLUSION

In this study, a high-throughput FPGA implementation of
the SDCT algorithm using look-ahead transformation has
been demonstrated. The proposed design achieves a
maximum clock frequency improvement by 2.1x, from 58.4
MHz to 123.4 MHz, compared to the conventional SDCT
pipeline architecture, which is reasonably close to the
theoretical threefold reduction of the iteration bound.
Various design details including fixed-point configuration
and simulation, pipeline retiming, and FPGA synthesis
results have been presented, together with detailed analytical
discussions.
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