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Abstract – Flip-Flop (FF) is the basic block of sequential 
digital circuits, which has a significant impact on the speed, 
power, and stability of digital systems. Reducing the power 
consumption of FFs is an attractive solution for attaining good 
energy efficiency of digital systems. However, the conventional 
TGFF (Transmission-gate flip-flop) consumes excessive 
dynamic power at clock inverters even though the data 
transition does not occur. To eliminate redundant clock 
transitions, some techniques are applied. This paper analyzes 
and compares recently published low-power FFs in 65 nm 
CMOS. 
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I. INTRODUCTION 

For constrained battery life in IoT (Internet of Things) 
applications, minimizing the power consumption of digital 
circuits is becoming important [1]. A few million flip-flops 
(FFs) are used in the overall digital system, which may be 
one of the most dominant causes leading to dynamic power 
consumption [2]-[4]. 

Conventional transmission-gate flip-flop (TGFF) is 
widely used in most applications, but its always-toggling at 
clock inverters (Fig. 1) leads to excessive power 
consumption at a typical activity ratio (~10%) in modern 
digital systems.  

On the other hand, many low-power applications exploit 
near-threshold voltage (NTV) computing for achieving 
maximum energy efficiency of digital systems [5]-[6]. This 
demands the reliable operation of FFs at low supply 
voltages, as sequential logic elements tend to be vulnerable 
to PVT variation [7]. Fully static and contention-free FFs are 
preferred in order to guarantee their reliable operation at 
NTV conditions.  

For these reasons, many recently published low-power 
FFs [8]-[11] aim to minimize unnecessary clock transitions 
at the internal clocked node (CKN), while maintaining their 
static operation (CKN makes the slave latch in transparent 
mode conditionally at a rising CK edge). Usually, the static 

operation of a Flip-Flop (FF) helps not only its robustness 
but also energy conservation by eliminating unnecessary 
power losses due to contention. These new FFs generally 
show lower energy dissipation than a TGFF, but their 
different energy-saving mechanisms render some of them 
more suitable for a given operating condition. This paper 
evaluates recent low-power FFs in a wide range of operating 
conditions and compares their performance and power 
dissipation.  
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Fig. 1. Conventional TGFF 

 
Fig. 2. Static single-phase contention-free flip-flop (S2CFF) 

 
Fig. 3. Changing-sensing flip-flop (CSFF) 
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II. REVIEW OF STATE-OF-THE-ART FFS 

A. Static single-phase contention-free flip-flop(S2CFF) 

S2CFF [8] shown in Fig. 2 is developed from dynamic 
TSPC FF [12] with additional transistors featuring glitch-
prevention. It is static and contention-free like TGFF and 
operates reliably at near-threshold voltage (NTV) 
conditions. The highlighted transistors in Fig. 2 make a new 
internal clock node for eliminating redundant clock toggling 
at clock inverters shown in Fig. 1. However, the redundant 
clock transition remains when D = 0, DN = 1, and QN = 1, 
which leads to excessive power even though an input data 
(D) is same as a stored data (QI). 

B. Changing-sensing flip-flop (CSFF) 

CSFF [9] in Fig. 3 has a change-sensing circuit that detects 
the difference between the input data (D) and the stored data 
(QI) in the FF. When CK = 0, the output of the change-
sensing circuit (CKN) is pre-charged. The master latch stores 
the new input data, while the slave latch keeps the previous 
data. When CK = 1, CKN is discharged only when the input 
data (D) and the stored data (QI) are different. (D = 1 & 
QN(an inverted output Q) = 1, DN(an inverted input D) = 1 
& QI = 1). The discharged CKN enables the master latch to 
hold the new input data and transfer it to the slave latch. If 
the same input data (D) is transferred to the slave latch 
repeatedly at every clock cycle, CKN stays high even when 
a rising CK comes in. The change sensing circuit is activated 
only when the new data is different from the stored data (QI) 
and saves unnecessary power consumption of the following 
circuit. However, CSFF can run into a critical race condition 

when D changes 0 to 1 during CK = 1, DN = 1, and QN = 1. 
DN and CKN are discharged at the same time, so it is difficult 
to hold the original data in a slave latch. In addition, when 
CK = 1, D = 1  0, CKN ≈ 0, DN = 0, and QN = 0, no pull-
up path for DN and QN is formed, which interrupts reliable 
operation at NTV.  

C. 18-transistor single-phase clocked flip-flop (18TSPC) 

18TSPC [10] shown in Fig. 4 is developed from 
MUX2_based FF. To eliminate redundant transistors, the 
logically equivalent nodes are merged. However, 18TSPC 
the has same internal clock buffering scheme like S2CFF, 
which still has redundant transitions. Besides, if CK goes to 
high when D = 0, CKN = 1, DN = 1, and QN = 0, a contention 
path is made, which may lead to failure at NTV. 

D. Redundancy eliminated flip-flop (REFF) 

REFF [11] in Fig. 5 eliminates all redundant clock 
transitions of internal clocked nodes and redundant 
transistors. With completely eliminated redundancy, REFF 
minimizes dynamic power consumption and guarantees 
reliable operation at low-voltage region. 

Fig. 6 shows distinct FF’s CKN waveform of low-power 
FFs including TGFF. Because of internal clock inverters, 
TGFF always reverses the clock phase regardless of the 
output state update. S2CFF and 18TSPC have the same 
internal clock buffering scheme (CKN), so they still have 

 
Fig. 4. 18-transistor single-phase clocked flip-flop (18TSPC) 

 
Fig. 5. Redundancy eliminated flip-flop (REFF) 
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Fig. 6. Transitions of internal clocked node (CKN) 

 
Fig. 7. Reliability of FFs 
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redundant transitions when the input D is low. On the other 
hand, CSFF and REFF minimize transitions at CKN, which 
saves dynamic power than other FFs. 
 

III. SIMULATION RESULT AND ANALYSIS 

The aforementioned flip-flops are laid out and evaluated 
in various operation conditions. For comparison, traditional 
TGFF is also implemented and evaluated. The test was 
performed in a 65-nm CMOS process design kit. For fair a 
comparison, all FFs use the same process technology and 

transistor lengths/widths (minimum length for all transistors, 
and PMOSs use 2x width of NMOSs). Fig. 7 displays the 
minimum operating voltage of FFs in 1k Monte Carlo 
simulations (global+local) for a voltage range from 0.4V to 
1.2V by 0.05V step. The result shows that fully static and 
contention-free FFs operate reliably at lower supply voltage 
than CSFF and 18TSPC with floating nodes and contention 
issues. 

Fig. 8 shows the simulated power dissipation of FFs. By 
eliminating redundant transitions of clocked nodes and 
redundant transistors, REFF and CSFF show relatively low  

 
Fig. 8. Post layout simulation results of FFs. (a)Average power at 1V, (b) Average power at 0.6V, (c) Average power at 10% activity ratio by sweeping VDD, 
(d) Leakage power at different VDD 

TABLE I. Performance Summary and Comparison 

 

TCK-Q 
*CK_Q Delay : Average of D = 0, D = 1 case *Setup / Hold Time : Average of D = 0, D = 1 case

TGFF S2CFF [8] CSFF [9] 18TSPC [10] REFF [11]
Conventional ISSCC 2014 JSSC 2018 JSSC 2019 JSSC 2021

Static Operation YES YES NO YES YES
Contention-Free YES YES NO NO YES

Redundant Clock Transition YES YES NO YES NO
Device Count 24 24 24 18 25

Power(µW) @1.2 V a 8.75 3.38 1.31 2.32 1.27
Power(nW) @0.6 V b 21.47 8.13 3.16 5.56 3.05

Leakage Power(nW) @1.2 V 0.16 0.15 1.20 0.11 0.15
Min. VDD 0.45 0.5 X 1.05 0.5

TCK-Q(ps) @1.2 V 160.5 144.1 152.9 136.4 135.3
Tsetup(ps) @1.2 V 22.9 97.9 106.9 57.2 134.2
Thold(ps) @1.2 V 1.5 -18.7 -16.0 50.1 -22.2

PDPCK-Q(fJ) c 1.409 0.487 0.200 0.317 0.172
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power consumption than other FFs when the data activity 
ratio is low (Fig. 8(a) and 8(b)). S2CFF and 18TSPC 
consume larger dynamic power than REFF and CSFF 
because they still have unnecessary clock transitions when 
D = 0, CK = 0  1, DN = 1, and QN = 1. Fig. 8(d) shows 
the leakage power of FFs at operating voltages from 0.6 V to 
1.2 V, averaged over all cases of internal node states (D, CK, 
DN, QN). CSFF [10] has a floating node at DN when D = 1 
 0, CK = 1, CKN ≈ 0, DN = 0, and QN = 0, which causes 
contention at DN, thus CSFF has larger leakage power than 
other FFs. Table 1 summarizes the results and compares 
other FFs. The Power-delay product (PDP = Average power 
× CK_Q delay @VDD = 1.2 V, @10% activity ratio), one of 
the circuit performance indicators shows REFF has the best 
performance. TABLE I shows the summary of simulation 
results and compares different FFs. 

To validate the FF’s actual performance, 32-bit shift 
registers with different FFs were designed as shown in Fig. 
9. The 32-bit shift register based on CSFF and REFF 
consume less power than other FF-based shift registers 
(@fCK = 10 MHz / 1 GHz), but they show lower speed than 
others. On the other hand, TGFF-based shift register 
consumes larger dynamic power than others and show the 
best speed among them. 
 

Table II. Performance Summary and Comparison (32-Bit Shift-Reg) 

 

TGFF S2CFF 
[8] 

CSFF 
[9] 

18TSPC 
[10] 

REFF 
[11] 

Conven
tional 

ISSCC
2014 

JSSC 
2018 

JSSC 
2019 

JSSC 
2021 

10M
Hz 

Average 
Power 
(µW) 

@1.2V 

2.88 1.74 0.61 1.24 0.49 

1GHz 287.3 173.0 59.4 122.6 49.2 

MAX Freq. (GHz) 3.71 2.89 2.55 3.50 2.60 

IV. CONCLUSIONS 

An energy-efficient flip-flop operation at NTV requires 
the following conditions: 1) fully static, 2) contention-free, 
3) no redundant transition, and 4) no redundant transistor. 
TGFF is fully static and contention-free, but clock toggling 
at clock inverters always consumes dynamic power. S2CFF 

operates reliably down to 0.45V but still has partial 
redundant transitions at the internal clocked node. 18TSPC 
has the lowest transistor count, but it has contention and 
redundant transitions when input D is low. CSFF eliminates 
redundant clock transitions with the change sensing scheme. 
However, inevitable floating node DN causes contention, 
and sizing effort is needed to prevent failure at race condition 
(input D goes to high during CK = 1, DN = 1, QN = 1). REFF 
satisfies all requirements for energy-efficient operation at 
NVT. 
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