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Abstract - In this work, a 17.5-GHz voltage-controlled
oscillator (VCO) integrated with a frequency divider chain of
1/4 division ratio has been designed based on a 65-nm CMOS
technology. The VCO is implemented as a LC cross-coupled
structure, which includes a 2-bit capacitor bank and switches
for coarse frequency tuning and varactors for continuous
tuning. The frequency divider chain is composed of a current-
mode logic (CML) /4 frequency divider, CML-to-CMOS
converter, and 50-Q driver. The VCO exhibits a frequency
tuning range from 16.3 GHz to 20.8 GHz, with -11.3-dBm
output power at the center frequency of 17.5 GHz. The
frequency divider chain converts the VCO oscillation frequency
down to 4.4 GHz with an output power around 0 dBm. The total
DC power consumption is 23.8 mW, and the circuit size
including the pads is 600 x 700 mm?>.

Keywords—65-nm CMOS, Capacitor bank, Current-mode
logic, Frequency divider, VCO

1. INTRODUCTION

The frequency range over 100 GHz has been attracting lots
of interests in various applications due to the wider frequency
bandwidth that can be provided [1]. High data-rate
communication systems [2] and high-resolution radar
systems for short range imaging and gesture scanning have
been developed in this frequency range [3], [4]. The key
component of these systems is a signal source that can be
modulated. However, for frequency ranges over 100 GHz, it
is challenging to generate a modulated signal because of the
issues related to phase mismatch and/or low Q-factor of
passive components. Especially, the low Q-factor is a main
cause of the phase noise degradation. For these reasons, high-
frequency radar systems conventionally employ a frequency
synthesizer operating in a relatively low frequency band,
typically around 15 GHz, which is subsequently upconverted
to the desired high frequency range using a frequency
multiplier [5], [6]. This configuration benefits from the phase
noise performance available, while providing a wide
frequency bandwidth owing to the low intrinsic phase noise
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Fig. 1. Conceptual block diagram of the conventional frequency
synthesizer.
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Fig. 2. Block diagram of the 17.5-GHz VCO integrated with frequency
divider.

of the frequency multipliers [7]. Hence, developing
frequency synthesizer around K- or Ku-band frequency band
is essential to generate the high-quality signals for systems
operating over 100 GHz.

A conceptual diagram of the conventional frequency
synthesizer which provides frequency modulation is depicted
in Fig. 1. The signal generated by the voltage-controlled
oscillator (VCO) is injected to the frequency divider, and the
divided signal passes through the multi-modulus divider that
provides additional frequency division as well as frequency
modulation. For the remaining part of the frequency
synthesizer, standard components needed for charge pump
phase-locked loops (PLLs) are included such as phase-
frequency detector (PFD), charge pump, and loop filter. This
work is focused on the implementation of a VCO integrated
with a frequency divider chain, which serves as a core
element of a complete frequency synthesizer operating at
17.5 GHz. The circuit is composed of a VCO, two frequency
dividers, and a CML-to-CMOS converter with a 50-ohm
driver, as shown in Fig. 2. The simulation results of each
circuit component and the integrated circuit are presented in
this work.

The remaining part of this paper is composed of following
sections. Section II describes the circuit design of the 17.5-
GHz VCO while the main results with the frequency divider
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and CML-to-CMOS converter are described in Section 111
and IV, respectively. The main results with the full integrated
circuit is presented in Section V. Lastly, the conclusion is
given in Section VI.

1. 17.5-GHz VCO

The designed VCO is composed of two parts: an oscillator
core and a cascaded buffer. The buffer is included to improve
the isolation between the oscillator core and the subsequent
circuit as well as to ensure the intended oscillation
frequency. As shown in Fig. 2, the output of the VCO is
branched into two paths, one leading to the frequency divider
and the other taken as the output of the entire circuit. The
path to the frequency divider is connected to the output of
the first buffer for isolation from the oscillator core, while
the circuit output is taken after the second buffer to enhance
the isolation between the frequency divider and the output.
The isolation provided by the buffer in terms of Sy; is -24.4
dB at 17.5 GHz by simulation, although a large-signal
isolation will be more relevant in practice.

A. Oscillator with 2-bit capacitor bank

Fig. 3 depicts the 17.5-GHz VCO core design. It is
implemented based on the conventional LC cross-coupled
structure, with a tail transistor, M3, to provide a stable current
bias of the oscillator. A pair of varactors are included for
frequency tuning of the VCO. Its capacitance is varied from
36.5fF to 177fF by adjusting Ve, leading to the change in
the core capacitance as well as the oscillation frequency of
the circuit. To achieve a wide frequency tuning range, the
size of varactors was determined large enough, although its
Q factor was limited below 10 with the selected size. Also
included for additional frequency tuning is the 2-bit binary
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Fig. 4. Schematic of the capacitor bank switch.
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weighted capacitor bank: C3, Cy with 28.8fF, and Cs, Cs with
57.11F. The 2-bit capacitors are linked by switches that can
be on and off depending on the tuning requirement. Each
switch is implemented by the same structure, which is
presented in Fig. 4. For enhanced switching operation, the
size of M5 was determined large enough (10 pum) to reduce
the on-resistance. Those of Ms and M; were selected small
(200 nm) to set the bias at the nodes X and Y through the
high on-resistance (about 1.5 kQ) when switch is turned on
[8]. The 2-bit binary weighted capacitors can provide four
different states of coarse tuning of the oscillation frequency,
each state being further tuned by Ve, to compensate for any
frequency shift caused by process, voltage, temperature
(PVT) variation or other parasitic components [9]. In this
way, the varactor and the capacitor bank collaboratively
work to provide a wide tuning range with preferred
performance. A pair of inductors, L;, L, are implemented
with a spiral structure as shown in Fig. 5(a). Their peak Q
factor was above 15, as confirmed by electromagnetic (EM)
simulation shown in Fig. 5(b) along with the inductance
value, for which ADS momentum was used.

Fig. 6 depicts the simulation result of the designed VCO.
The tuning range of the oscillation frequency is from 16.3
GHz to 20.8 GHz. For each capacitor bank control bit, By
and B, a frequency tuning of 2.5 GHz - 3 GHz is obtained
as Ve 1s varied from 0 V to 1.5 V. For a fixed Viue, the step
frequency shift with the control bit changes is 0.6 GHz. FoM
(Figure of Merit) and FOMT (FoM with Tuning range) of the
VCO was -175.2 dBc/Hz and FoMT = -182.9 dBc/Hz,
respectively, by simulation.
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Fig. 5. (a) Structure of the spiral inductor (b) Simulated performance of
the inductor.
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B. Resistive Load Buffer

As mentioned previously, the output buffer enhances the
isolation between the oscillator core and the output or other
circuits. The conventional output buffer is typically
implemented by common-source stage with an inductive
load to drive a 50-Q output port with sufficient output power.
However, designing inductive load around 17.5 GHz needs
a large chip area. For this reason, in this work, a resistive
load was applied to the output buffer for small area at the
cost of gain or output power, which also involves a simpler
design compared to the inductive load.

To improve the isolation between the oscillator core and
the output node as well as the CML divider input, a 2-stage
buffer was employed as mentioned earlier. Both stages
employ the same structure as shown in Fig. 7, which is a
simple common-source stage with a resistive load. As
presented in Fig. 8, the simulated output power of the VCO
is from -12 dBm to -11 dBm when Vi, varies with different
capacitor bank control bits. As explained before, the output
power is degraded due to the resistive load buffer, but the
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Fig. 6. Simulated oscillation frequency of the VCO
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low output power can be compensated by subsequent circuits
such as an amplifier or input buffer. The output power
decreases with the low control bit numbers, as the gain of the
output buffer is decreased as the oscillation frequency
increases.
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Fig. 10. Block diagram of the CML frequency divider

III. FREQUENCY DIVIDER

For high-speed frequency dividers, a current-mode logic
(CML) structure is conventionally utilized because of its
advantages such as fast switching and wide input frequency
range [10]. In this work, two identical CML latches are
cascaded in a master-slave configuration to form a /2
frequency divider. The circuit schematic of the latch is
shown in Fig. 9. The block diagram of the frequency divider
composed of the two latches is given in Fig. 10. Furthermore,
a CML divider benefits from large voltage swings available
with the positive feedback of the latch, which was also
utilized in the designed frequency divider. Two frequency
dividers, 17.5-t0-8.8 GHz divider and 8.8-t0o-4.4 GHz
divider, are cascaded in the design, which were implemented
with the same topology, only difference being the size of the
transistors and resistors included in the circuits.

Typically, CML dividers are driven by the input rail-to-rail
differential swing. However, the output swing of the VCO
buffer in this work that drives the CML divider is not large
enough. Therefore, to ensure a stable switching operation of
the first divider (17.5-t0-8.8 GHz divider), a DC block
capacitor was inserted, and an external gate bias was applied
to the CML divider input (gate of M5 and Ms) so that the
CML divider operates in the class-AB biasing [11]. The bias
level of the input transistors, Ms and Ms, of the second
divider (8.8-to-4.4 GHz divider) was determined by the
output voltage level of the preceding divider. Hence, for the
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second divider, the chip area can be saved because the DC
block capacitor can be omitted. On the other hand, if the bias
is not applied to the second divider properly, it is possible
that the entire divider chain does not operate. Therefore, for
proper operation, the transistor size and the resistor values
must be chosen with enough margins for the bias levels. As
for the cross-coupled pairs in the latch shown in Fig. 9, M;
and M, are smaller than M; and M., thus contributing
relatively small capacitance at the output node [12].

The layout of the CML divider chain, which consists of
17.5-t0-8.8 GHz divider and 8.8-t0o-4.4 GHz divider, is
presented in Fig. 11. Special care was taken to maintain the
symmetry in the layout. Fig. 12 shows the simulated
sensitivity curve of the CML divider chain, for which post-
layout simulation was performed for accurate RC extraction.
The input voltage swing of the CML divider was about 330
mVy, (-5.6 dBm, single-ended), which would allow a locking
range wide enough to match the frequency tuning range of
the designed VCO that drives the frequency divider.
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Fig. 11. Layout of the CML divider chain
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Fig. 12. Simulated sensitivity curve of the CML divider chain

IV. CML-TO-CMOS CONVERTER WITH A 50-Q DRIVER

Typically, a CML-to-CMOS converter is employed to
convert the current-mode circuit to static CMOS circuit
which is driven by a voltage level. Thus, a CML-to-CMOS
converter follows the CML divider chain to drive the 50-Q
driver that is implemented as a pair of inverters cascaded as
shown in Fig. 2. The CML-to-CMOS converter in this work
mainly serves to boost the voltage swing and set the required
common-mode voltage level, so that the 50-Q driver can
easily drive the signal.

http://www.idec.or.kr

Fig. 13 shows the schematic of the CML-to-CMOS
converter, which is basically a push-pull OP-Amp structure
with a differential output. Also shown in Fig. 14 is the
schematic of the 50-Q driver, which is a 2-stage inverter
chain with resistive feedback. A large value (10 kQ) was
selected for the resistors to sufficiently isolate the input and
output signals while enforcing the same common-mode
levels for the input and output. For the 50-Q driver, tapered
size was employed where a larger size was employed for M3
and M, than M; and M>, an effort to drive the signal
efficiently [13].
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Fig. 13. Schematic of the CML-to-CMOS converter.
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Fig. 14. Schematic of the 50-Q driver.
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Fig. 15. Layout of the VCO integrated with the frequency divider chain
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V. INTEGRATED VCO-FREQUENCY DIVIDER CHAIN

The circuit components described in the previous sections,
namely the VCO with a 2-stage buffer, CML frequency
divider, CML-to-CMOS converter, and 50-ohm driver, have
been integrated to form an integrated VCO-frequency divider
chain. Fig. 15 shows the layout of the entire circuit integrated,
which also includes the pads and bypass capacitors. The total
area is 600 um x 700 pm.

Transient simulation was performed for the waveform at
the output of the VCO and the frequency divider, for which
Vune and capacitor bank control bit were fixed. The results
shown in Fig. 16(a) confirm that the divider chain divides
the VCO output signal by 4 as intended, and its output power
is estimated to be over 0 dBm. The frequency domain
spectrum profile of the output obtained from the Fast Fourier
Transform (FFT) of the transient simulation result is
presented in Fig. 16(b). It clearly shows the two peaks at 17.6
GHz (VCO output) and 4.4 GHz (frequency divider output)
with sufficient suppression of adjacent harmonics. The total
power consumption of the entire circuit is 23.8 mW, which
is divided into 14.3 mW and 9.5 mW for the VCO and the
divider chain, respectively.
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VI. CONCLUSIONS

A 17.5 GHz VCO integrated with a frequency divider
chain of 1/4 division ratio, which consists of two CML
divider, CML-to-CMOS converter, and 50-Q driver, has
been designed in this work based on a 65-nm CMOS
technology. The VCO exhibits a tuning range from 16.3 GHz
to 20.8 GHz, which was realized with a capacitor bank and
a varactor tuning. The frequency divider converts the
oscillator frequency of the VCO down to around 4.4 GHz.
Total power consumption of the entire integrated circuit is
23.8 mW. The circuit can be applied to a K- or Ku-band PLL
and frequency synthesizer, which will serve as a modulated
signal source for various high-frequency systems including
broadband communication and radar systems.
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