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Abstract — This paper analyzes the output power of the
thermoelectric generator (TEG) and continuously scalable-
conversion-ratio SC converter for achieving low-power
maximum power point tracking (MPPT) with switched-
capacitor (SC) converter. In state-of-the-art SC energy
harvesting interfaces, they transfer harvested power
inefficiently due to fixed conversion ratios. Therefore, the
proposed MPPT method harvest power based on the
conventional open circuit voltage method, without additional
open circuit voltage sampling period. The proposed energy
harvesting converter is designed in a 180 nm CMOS process
and is measured to prove that the power can be transferred
properly with the analyzed power conversion modes.
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1. INTRODUCTION

Thermoelectric generators (TEGS) are suitable energy
harvesting (EH) sources for small and reliable wireless
sensor applications, as they are scalable to a small volume
and supply stable power from a constant heat source [1], [2].
For higher power conversion efficiency (PCE), inductors
were commonly used to match the output impedance of the
EH sources. However, since the huge volume of the off-chip
inductor limited the form factor of small loT devices,
switched-capacitor (SC) converter EH interfaces have been
thoroughly studied for the implementation of small sensors
[3]-[6].

Unlike inductor-based converters, fixed VCRs of
conventional SC converters drop the converter PCE faster
than the MPPT efficiency as Vin changes, as shown in Fig.
1(a). Therefore, in typical battery-employing SC interfaces,
the SC converter should be highly reconfigurable to perform
voltage conversion between the input (Vin) and output (Vour)
voltages and between Vour and the battery voltage (Vgar).
wide output voltage range of EH sources. However, as the
SC converters become more reconfigurable, the increase of
output series resistance and gearbox control power limit the
overall PCE of EH interfaces. Therefore, conventional
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reconfigurable SC converters need to track the global
maximum end-to-end efficiency point through Pour sensing.
Nevertheless, state-of-the-art SC maximum power point
tracking (MPPT) converters operate by sensing the input
power (P\\) of a DC-DC converter without considering the
efficiency degradation due to the fixed voltage conversion
ratio (VCR) or by tracking the global maximum end-to-end
efficiency point through sensing the output power (Pour).
These MPPT schemes require high static MPPT control
power, and cost output regulation performances.
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Fig. 1. Conceptual end-to-end efficiency considerations with (a)
reconfigurable and (b) CSCR SC converters


http://creativecommons.org/licenses/by-nc/4.0

IDEC Journal of Integrated Circuits and Systems, VOL 9, No.2, April 2023

Also, conventional EH SC converters carry out power
conversion over a wide range of Pour using fixed
capacitance resources, which leads to a low end-to-end
efficiency and low maximum Pour (Poutmax) [3], [6]. Thus,
a novel power conversion scheme appropriate for wireless
sensor applications is required for high-performance EH SC
converters.

In 2019, a single-topology continuously scalable-
conversion-ratio (CSCR) SC converter that exhibits
relatively constant PCE over wide Vour range was
introduced in [7], as shown in Fig. 1 (b). Although the paper
proposed a step-down converter, the relatively constant PCE
over the wide voltage conversion ratio (VCR) of the

converter is a common characteristic of CSCR SC converters,

and is used as a key factor in implementing a power-efficient
EH interface in this work.

Thus, this work analyzes an output power of the TEG,
conventional reconfigurable SC converter, and CSCR step-
up SC converter, and discusses the MPPT scheme that is
appropriate for the SC energy harvesting interfaces. Also,
the paper introduces a novel lower-power MPPT scheme
implemented by associating the theoretical output power of
the TEG and CSCR SC converter.

This paper is organized as follows. Section Il describes
the prior-art reconfigurable SC converters and CSCR SC
converter, and analyzes the output power of them. Section
Il explains the designed converter, Section IV shows the
measurement results, and Section VI concludes the paper.

Il. OUTPUT POWER ANALYSIS FOR TEG EH INTERFACE WITH
SC CONVERTER

A. Prior Art

Studies about SC-based energy harvesting interfaces
mostly focused on improving the power conversion
efficiency by implementing the low-power MPPT schemes
[3], [6], with cascaded SC converter interfaces, as shown in

Fig. 2.
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Fig. 2. (a) Conventional two-stage SC EH interface [3]. (b) Conventional
triple-mode hybrid-storage SC EH interface [6]
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However, assuming the conventional reconfigurable SC
converter is operated with ideal power switches, the output
power of the SC converter is limited by its slow-switching
limit of current operating VCR mode. Therefore, the ideal
output current transferred to Vour from SC converter can be
derived theoretically by calculating the slow-switching limit
impedance, which exhibits sawtooth waveform in VCR vs.
Pour graph.

Fig. 1(a) shows the simplified concept of end-to-end
efficiency with reconfigurable SC converters, which
inevitably degrades the end-to-end efficiency due to multiple
VCRs.

B. Theoretical end-to-end efficiency consideration with TEG
and CSCR SC converter

As introduced in the introduction, Fig. 3 shows the
analysis of the output power of TEG and CSCR SC converter.
In 2019, a single-topology continuously scalable-
conversion-ratio (CSCR) SC converter is introduced to
convert input power with a relatively constant power
conversion efficiency (PCE) over a wide VCR range. and
CSCR SC converters. Therefore, the product of the MPPT
efficiency and PCE of CSCR SC converter does not degrade
end-to-end efficiency severely, unless the MPPT efficiency
is always maintained highly. Moreover, the relatively
constant end-to-end efficiency due to the VCR ratio of
CSCR SC converters enables them to operate with Pin-
MPPT methods, which are easily implemented and do not
require any additional power-consuming Pour-sensing
circuits.

Considering Pin-MPPT methods, OCV MPPT is one of
the most widely used MPPT schemes because of its high
MPPT efficiency and simple circuit implementation [8].
However, the conventional OCV MPPT method requires a
long OCV-capture time to charge an OCV-capturing
capacitor with small input currents [9]. Moreover, the OCV-
capturing capacitor should be sufficiently large to maintain
the maximum power point (MPP) voltage from leakage
currents for a long time, and an offset-compensated static
comparator is required to maintain the MPP state accurately
for low-V)y interfaces.

To overcome the aforementioned issues of conventional
OCV methods, the proposed MPPT scheme is designed to
operate without either a direct OCV-capture period or Vn-
connected comparator, as shown in Fig. 3. On the basis of
the output power characteristics of the TEG (Prec) [2], the
input power equation of CSCR SC converters (Pcscr) [7],
and the reasonable assumption that the ideal MPP voltage of
the TEG (Vteempr) is half of the OCV voltage of the TEG
(V1ec0c), the required operating frequency of the CSCR SC
converter (fswy) for ideal MPPT operation can be expressed
as,

VIN

RrecCescr Vour

M

fswi =
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Fig. 3. Theoretical end-to-end efficiency consideration with TEG and CSCR
SC converter

where Rreg is the internal resistance of the TEG, and Ccscr
is the total flying capacitance of the CSCR SC converter.
Therefore, the MPPT controller of the proposed interface is
designed to generate value of fswi that is proportional to V.

I1l. CIRCUIT IMPLEMENTATIONS

Fig. 4 shows the top diagram of the proposed SC interface
that shows the novel MPPT operation based on the above
analysis. The proposed SC converter interface employs a
step-down CSCR SC that extracts power from a 0.1-0.5 V
TEG, regulates a 0.75 V output load, and manages a 1.2—
1.45 V battery.

The overall interface consists of the proposed MPPT
controller, non-overlapping phase generator, decoder, level
shifter, gate driver, and step-down CSCR SC converter. For
preventing the short-through current between operating
phases, the converter operates with non-overlapped phase
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Fig. 4. Top diagram

signals (¢), which is generated by the output clock signals
(CKy) of the proposed MPPT controller. The proposed
MPPT controller is designed to generate frequency of the
CK; signal to be equal to the fswa, derived in Section 1.

Unlike the conventional open-circuit voltage method, the
proposed interface does not require additional open-circuit
voltage sampling circuit, improving the MPPT efficiency.
Thus, for showing the accuracy of the proposed MPPT
method, the proposed interface employs off-chip capacitor
of 0.1 uF, which can rather be replaced by smaller capacitors
in small sensor applications.

IV. MEASUREMENT RESULTS

The chip micrograph of the proposed converter is shown
in Fig. 5. The total chip area is approximately 7.25 mm?2,
Both MIM and MOSFET capacitors are used for power
conversion operation with high power density. The
controller is located in the middle of the chip to operate the
power switches of the converter at the same time as possible,
and the power switches are located at the right and left side
of the controller to reduce the parasitic capacitance of the
gate drivers.
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Fig. 5. Chip micrograph
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TABLE I. Specifications of the measured CSCR SC converter

Parameter Value
Process 180 nm
# of Vins 2
# of Vours 2
Flying capacitor 7.8 nF
Input capacitor 0.1 uF
Output capacitor 2.2 uF
Switching frequency > 10 kHz

Table | presents the summarized specifications of the
measured CSCR SC converter. As shown in the table, the
converter is designed comparable specifications to the state-
of-the-art SC converter-based MPPT EH interface [3]. The
converter was designed using TSMC 180 nm technology,
and employs flying capacitor of 7.8 nF, 0.1 uF input
capacitor, and 2.2 JF output capacitor.

Fig. 6 shows the measured transient response of the
proposed interface. As shown in the waveform, the proposed
interface successfully regulates Vn close to the half of the
open circuit voltage of the TEG (Vtes,oc) during transient
open circuit voltage change.

POUT=10 uw&, ........ 05V
Vear=14V S
./ . 400ps
01V
‘VIN=0-1V; ::;::::f::::f::::
: : : ' 1VI 1V
Vieoc£02V [T I

Fig. 6. Transient response.

V. CONCLUSION

An analysis for designing a low-power SC-based MPPT
EH interface was introduced. Through formula analysis, the
proposed interface is proven to harvest the TEG power with
low static MPPT control power. Additionally, the measured
waveform of the proposed interface shows that the proposed
converter successfully tracks the Vteg,oc and proves that the
above analysis is feasible.
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