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Abstract - A floating inverter amplifier (FIA) is an alternative 

amplifier for switched-capacitor circuits. FIA-based switched-

capacitor circuits have both negative feedback and dynamic 

operation advantages. However, the self-cutoff operation 

creates time-varying operating points while acting as an 

amplifier. Therefore, a small-signal analysis cannot anticipate 

the system's response. This paper presents a circuit-design-

oriented intuition to tame the step response of such circuits. 

Also, the simulation method using RF simulators is explained 

to verify the gain and noise performance. Finally, a Miller-

compensated 2-stage FIA is designed based on described design 

procedure, then applied to a fully dynamic zoom ADC design. 

The prototype ADC achieves 101.6 dB signal-to-noise and 

distortion ratio (SNDR) with an SNDR-based Schreier figure of 

merit (FoM) of 174.2 dB at 2.56-MHz fs having linearly scalable 

bandwidth and power consumption as fs varies, as well as easy 

power duty-cycling. 
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I. INTRODUCTION 

The operational transconductance amplifier (OTA) is 

essential for designing delta-sigma ADCs because 

integrators and residue amplifiers are OTA-based building 

blocks, offset with low noise in sub kHz bandwidth. 

However, such analog circuits get penalties for scaling the 

CMOS process because of shrunk voltage headroom and low 

intrinsic gain. Moreover, bandwidth control of an OTA is not 

straightforward because extra circuits and dedicating logic 

are needed. 

Recently, an FIA were introduced as an alternate circuit 

for the OTA in a switched-capacitor circuit. [1]-[3]. Two 

characteristics are important factors for above. First, an 

FIA’s self-quenching behavior makes system operate 

dynamically. Therefore, controlling sampling speed and on-

demand operation are available easily. Second, it is simple 

to embed the FIA to closed-loop system because of inherent 

common-mode feedback (CMFB), which is a tricky issue in 

dynamic amplifier or ring amplifier. 

Fig. 1 shows a schematic of the FIA and its operation. As 

shown in Fig. 1(b), a varying common-source voltage of 

NMOS and PMOS over time results in time-varying 

operating points. This time variance makes it impossible that 

analyze the small-signal model in the frequency or Laplace 

domain. A basic linear system theory is brought to help better 

understand. General input/output description of the initially 

relaxed linear system is expressed as 

 

𝑦(𝑡) = ∫ ℎ(𝑡, 𝜏) ∙ 𝑥(𝜏)𝑑𝜏.
∞

0
            (1) 

 

h(t, τ) represents the impulse response observed at time t 

to the applied impulse before τ time. With the time-

invariance, h(t, τ) reduces to h(t - τ) thus Fourier transform 

of (1) becomes 
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Fig. 1 (a) schematic and (b) operation across the time 
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𝑌(𝑗𝜔) = ∫ [∫ 𝑥(𝜏) ∙ ℎ(𝑡 − 𝜏)𝑑𝜏
∞

0
]𝑒−𝑗𝜔𝑡𝑑𝑡

∞

0
  

          = ∫ 𝑥(𝜏)𝑒−𝑗𝜔𝑡 [∫ ℎ(𝑡 − 𝜏)𝑒−𝑗𝜔(𝑡−𝜏)𝑑𝑡
∞

0

] 𝑑𝜏
∞

0

 

 = 𝐻(𝑗𝜔) ∙ 𝑋(𝑗𝜔).                        (2) 

 

However, this is not valid in the time-variant system 

because an impulse response is time-dependent and 

therefore is no longer a time-shifted version of the original 

one, as expressed below 

 

𝑥(𝑡) → ℎ(𝑡) ∙ 𝑥(𝑡).             (3) 

                    

𝑥(𝑡 − 𝑡𝑑) → ℎ(𝑡) ∙ 𝑥(𝑡 − 𝑡𝑑) ≠ ℎ(𝑡 − 𝑡𝑑) ∙ 𝑥(𝑡 − 𝑡𝑑). (4) 

          

An FIA's open-loop gain is already discussed by time-

domain analysis in [4]. However, using those to different 

topologies is debatable since both instant input and the 

response of the corresponding system differ from the open-

loop case (e.g., multi-stage cascading or embedding in a 

feedback system). 

Also, quantitative analysis of the LTV system is much 

more intricate than the LTI system. As shown in Fig.2, the 

amplification phase of the SC-integrator is configured as a 

capacitive feedback amplifier, but deriving the transfer 

function is difficult because the linear time-variant state 

equation should be solved. Therefore, circuit designers count 

more on intuition than analysis to interpret the circuit's 

response. 

This paper is organized as follows. Verification method of 

a proposed FIA in the SC-circuit is discussed in terms of gain, 

noise and stabilization in Section II. In Section III, a 

designed fully dynamic zoom ADC is briefly described. 

Section IV presents measurement results, then conclude this 

article. 

 
II. DESIGN VERIFICATION OF THE FIA IN SC-CIRCUITS 

A. Gain 

A simulation test-bench is shown in Fig. 3. Input, output, 

and the corresponding response of FIA are precisely those of 

the FIA inside the SC-integrator under this configuration. An 

ideal S/H plays the role of ADC and DAC with an infinite 

resolution. Therefore, a MOD1 without quantization error 

operates periodically rather than chaotic, so running PSS 

analysis is available. A transfer function of an SC-integrator 

is 

𝑉𝑜(𝑧)

𝑉𝑖(𝑧)
=

𝐶1

𝐶2
∙

𝑝𝑧−1

1−𝑝𝑧−1
             (5) 

 

where p ≈ A/1+A. 

 

An NTF of the first order delta-sigma modulator is 1-pz-1. 

A gain of an FIA within the SC-integrator can be extracted 

from the magnitude of the NTF at DC. Using this method, 

the gain of an FIA in the first integrator is about 60 dB. 

 

B. Noise 

Assuming the amplifier is a static OTA, the total noise 

power on C1 of the SC-integrator in Fig. 3 is 

 

𝑣𝑛,𝐶1
̅̅ ̅̅ ̅̅ 2 =

𝑘𝑇

𝐶1
∙ (

7 3⁄ +2𝑥

1+𝑥
)           (6) 

where x = 2gm𝑟𝑜𝑛 [5]. 
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Fig. 2. Small-signal model of FIA based SC-circuit at amplification 

phase. 
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(b) 

Fig. 4. (a) Proposed FIA (single-ended equivalent) and (b) SC circuit 
configuration. 
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Fig. 3. Block diagram of simulation testbench. 
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A formula can be changed according to the OTA’s topology, 

but it is apparent that the sampling capacitor, gm, and 

switches’ Ron affect noise power. However, with an FIA 

rather than the OTA, parameters are highly coupled through 

feedback, and varies along with time. Consequently, 

acquiring an equation such as (6) demands a lot of 

mathematical efforts. 

  Fortunately, CAD tools those are widely used for circuit 

design can compute noise power of the time-variant system. 

A simulation testbench is same to that of in fig. 3. In terms 

of noise simulation, this is a traditional method to calculate 

device noise of delta-sigma modulator [6]. Fig. 5 shows that 

pnoise and transient-noise simulation are well matched. 

C. Stabilization 

In case of the nominal 2-stage amplifier using a Miller-

compensation with zero-nulling resistor, key parameters for 

stabilization is below 

 

ωug = gm1/𝐶𝑚.                 (7)   

 

  |𝑧| ≈
|𝑅𝑧−

1

𝑔𝑚2
|

𝐶𝑚
.                (8) 

 

|𝑝2| ≈
|𝑔𝑚2|

𝐶𝑚
.               (9) 

                

 A difference from the conventional case is that gm changes 

over time in case of the FIA based SC-circuit. The necessary 

condition of the stable condition is ∥ωug∥<∥p2∥. Since Cres 

affects FIA’s gm more than transistor’s size, the stable 

condition implies Cres1<Cres2. Rz acts on a damping of the 

step response. This means that Rz contributes not only 

stability but also settling accuracy.   

  For initial design procedure, designers should first tame a 

step response by manipulating Cres1, Cres2, Cm, and Rz 

including transistor sizing, and then check the gain, noise by 

performing simulations as described in Section II A and B. 

III. CIRCUIT DESCRIPTION 

Fig. 7 shows a top block diagram of the proposed ADC. A 

zoom ADC topology is selected to overcome limited swing 

range of FIAs. 5-level flash ADC and 5-bit asynchronous 

SAR ADC are used as a multi-bit quantizer. Data-weighted 

averaging method is used for dynamic element matching to 

cope with linearity issue of the main feedback DAC. A loop 

filter is designed to 2nd order CIFF topology. The first 

38.9nV/ Hz

(106dB SNDR condition)

Frequency(Hz)

 

-1.56 dBFS input

SNDR: 107 dB.

PSD(dBFS)
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Fig. 5. PNOISE result of the first integrator and SNDR of the designed 

ADC which only loop-filter’s noise is activated. 
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(b) 

Fig. 6. (a) Design-oriented analysis and (b) Bode plot 
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integrator employs chopping to mitigate 1/f noise. There are 

no static circuits such as OTAs and current sources. Hence, 

a designed ADC operates fully dynamically. The residue 

quantization error is canceled through feed-forward path [7]. 

Over-ranging is four to cover up the error of coarse SAR 

ADC. This implies that the coarse ADC has a ±1.5 LSB 

redundancy. 

IV. MEASUREMENT 

An audio analyzer, APx555 is used as a signal source. It 

has 120 dB SNDR resolution within signal bandwidth, but 

the output of the APx555 has a zero common-mode voltage. 

Therefore, signal conditioning is needed to filter out-of-band 

noise and makes a proper common-mode level. Fig.9 shows 

simplified block diagram. Analog front-end composed of 

anti-aliasing filter (AAF) and charge-bucket (CB) filter. The 

second-order multiple feedback topology is designed as an 

AAF. It attenuates the first aliasing band signal by -60 dB. 

Besides, the AAF converts zero common-mode level to the 

appropriate common-mode level of subsequent ADC. A CB 

filter is placed to assist the AAF in driving an ADC and 

preventing the signal contamination from kickback noise. 

The prototype IC is implemented in a 0.18-µm CMOS 

process, and occupies 0.65 mm2. Fig. 8 shows a chip-

photograph. As shown in Fig.11., 101.6 dB SNDR is 

calculated from the FFT results when an ADC operates at 

2.56 MHz of sampling frequency as shown in Fig. 10. 108 

dBc of THD is measured, which means there is almost no 

room from noise margin. This is because coarse ADC’s 

quantization error isn’t fully canceled due to gain-error 

between flash and SAR ADC. The prototype ADC operates 

from 256 kHz to 3.75 MHz of sampling frequencies with 

SNDR > 100dB. SNDR decreases at very low frequency 

because input filter cannot prevent the noise aliasing of the 

signal source, and dynamic range is measured to 101 dB, as 

shown in Fig. 12. Dynamic range and SNDR have almost the 

same value. This is because small amplitude signal is buried 

by ground noise. We suspect the reason for that I/O driver’s 

power isn’t separated from digital power. Hence, when on-

chip output buffer drives an external logic analyzer, digital 

circuits include timing logic of the loop filter is affected. 

 

 

Fig. 7. Top block diagram 
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Fig.9. (a) Test set-up diagram and (b) Bode plots of each block. 
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Fig. 8. Chip microphotograph 
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V. CONCLUSION 

A dynamic integrator using a 2-stage FIA is introduced to 

replace the conventional OTA based integrator. Simulation 

method to verify such time-variant system is briefly 

explained, and fully dynamic zoom ADC is implemented 

using the proposed integrator. The proto-type IC achieved 

101.6 dB SNDR. Besides, SNDR > 100dB is accomplished 

within 256 kHz to 3.75 MHz fs. This research contributes to 

validity of multi-stage frequency compensated FIA design 

and its verification. 
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Fig.10. FFT result of prototype ADC at 2.56MHz fs 

 

 

Fig.11. Measured SNDR, DR versus input amplitude 

 

 

Fig.12. SNDR versus fs from 37.5 kHz to 3.75 MHz. 
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