
IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

Abstract - In this paper, we present a neuromorphic processor

that could learn to classify images through spiking information

between neurons. Data is only computed locally, and there is no

need for energy-hungry data transmissions that is required for

any other machine learning algorithms. Careful algorithmic

adaptations, along with novel hardware implementation of

softmax functions are introduced to deliver maximum

performance on image classification tasks while minimizing

energy consumption. The design was fabricated in TSMC 65nm

technology and consumes mere 23.6mW at a scaled voltage of

0.8V with 20MHz clock frequency, while showing a throughput

of 73.9M pixels/second for supervised training on handwritten

images.

Keywords—Edge computing, Neuromorphic computing,

Image classification, Learning systems, Multi-layer

perceptrons

I. INTRODUCTION

Artificial neural networks (ANN) have shown great

success in computer vision tasks such as MNIST, CIFAR,

ImageNet, etc. A special type of artificial neural network is

spiking neural networks (SNN). Instead of using continuous-

valued activation values, SNN uses binarized activations just

like biological neurons. Apart from the fact that SNNs are

more biologically plausible than standard neural networks,

SNNs could be advantageous in terms of energy efficiency

over standard ANNs in hardware implementations. This is

mostly because of reduced data transmissions between

processing elements, since only one bit is required to

represent activations of neurons [1].

However, this reduction in data transmission is no longer

possible to build a back-propagation based training processor.

Back-propagation requires that a continuous value to be

propagated between neurons: this breaks our assumption that

only spikes communicate between processing elements.

Because of this, most neuromorphic chips either focused on

implementing only inference, such as the TrueNorth chip

developed by IBM [2], or used a spike-timing-dependent-

plasticity (STDP) rule [3], which often shows poorer

performance compared to back-propagation based learning,

to avoid this constraint.

In this paper, we introduce a neuromorphic processor,

extending our prior work [16] with the focus on the design

process and efficient hardware implementation of the softmax

function. In section II A-B, we summarize the general system

with the work from [16]. The adopted algorithm, a variant of

difference target propagation [5], has the property that there

is no high bit-width error path required for training, while

maintaining a relatively high performance in classifying

images. Moreover, the spiking nature of the feedbacks allow

hardware designers to exploit sparsity without modifying the

original algorithm, enabling energy-efficient training.

II. SYSTEM DESIGN

A. Algorithm Adaptation

The original algorithm described in [4] has some properties

which are not desirable in digital hardware implementation.

The main drawback is that it uses a double exponential post-

synaptic potential for transition of spike data into internal

neuron voltage.

κ(t) =
𝑒

−
𝑡

𝜏𝐿 − 𝑒
−

𝑡
𝜏𝑆

𝜏𝐿 − 𝜏𝑆

 𝑃𝑆𝑃𝑗
𝐵(𝑡) = ∑ 𝜅(𝑡 − 𝑠)

𝑠∈𝑋𝑗

Since exponential functions are hard to implement in

digital circuits efficiently, we have developed a different

kernel that would significant reduce hardware overhead. The

computational saving by implementing our own kernel is

shown by calculating the theoretical number of FLOPs

required in each time step. Using double exponential kernels,

409,840 FLOPs are required per timestep, while only 4,570

is required on average using implemented kernel.

B. Processor Architecture

The processor has an architecture of 1 input layer with 784

neurons, 2 hidden layers with 200 neurons each, and an output

layer with 10 neurons. As shown in Fig. 2, each hidden neuron

has RAMs that contains synaptic weights, and tracks how

many times they have been called.

 Although having one RAM per neuron is more desirable in

terms of energy savings and biological similarity, it is often

area-inefficient as smaller RAMs result in more area

overhead to implement the same amount of memory. Thus,

we have decided on 5 neurons sharing a single RAM by

increasing the width of the RAM. This was possible since the

implemented algorithm requires the same column of the

RAM to be called at each time step.

Fig. 1 shows the overall architecture of implemented

design. All communication between neurons are transmitted

a. Corresponding author; djeon1@snu.ac.kr

Manuscript Received Jan. 29, 2020, Revised Mar. 26, 2020, Accepted Mar.
27, 2020

This is an Open Access article distributed under the terms of the Creative Commons

Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Designing Neuromorphic Processor with On-Chip Learning

Jeong Woo Park1, Dong Suk Jeona

Graduate School of Convergence Science and Technology, Seoul National University

E-mail : 1jeffjw@snu.ac.kr

http://creativecommons.org/licenses/bync/3.0

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

through spike decoders, which translates spiking information

to addresses. This architecture is expected to increase area

efficiency, as connecting neurons to every neuron in the next

layer will cause connecting wires to dominate area usage [6].

Inside the hidden layers in Fig.1, 200 neurons in a neuron

clusters, along with two buffer memories totaling 2.2 or

4.8Kb and an update-value calculation unit with a sigmoid

Fig. 1. Block diagram of implemented design, from hidden neuron,

hidden layer, and top-level. Figure reprinted from [16].

function implemented as LUT. Inside the hidden neuron

clusters, 5 neurons share a weight memory for higher area

efficiency.

The hidden neuron in Fig. 1 shows that each hidden neuron

accumulates three values: previous layer spikes, output layer

spikes, and target spikes. The accumulated value of previous

layer spikes is used to determine the firing probability of that

neuron, and accumulated value from output layer spikes and

target spikes are used to calculate weight update values.

C. Pipelining

To achieve efficient training, we propose to pipeline steps

required for updating on an image by breaking down training

procedures to layer processing and update value processing.

Unlike conventional deep learning algorithms, this SNN

algorithm relies on very small number of global spiking

information to update its weights. This enables efficient

pipelining, as other algorithms will require unrealistic

Fig. 2. The pipelining scheme and out-of-order updates. Figure

reprinted from [16].

Update Skipping for low training overhead

Skip updates to save energy

Spike Pattern

Analyzer

W MEM Update Path

Hidden Neurons

0

O
u
tp

u
t

T
a

rg
e

t

0

1

 Value Calculation
0

Dendrite

Values

1

0

Skip Update?

ΔW Path

• Block all inputs to

Update & ΔW path

• Saves switching &

memory write

energy

Matching Spike Pattern

Output

Spikes

Target

Spikes

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

Hidden Neurons

(Dendrites)
Output

Potentials

c
o
n
v
e

rt
s

to

ΔW

Fig.3. The update skipping mechanism implemented for our system.

Figure reprinted from [16].

number of buffer registers for pipelining update value

processing step, which is disastrous for both area and power

of digital system. Moreover, update value in each column is

identical for processing on a single image, which further

reduces buffer register overhead for pipelined training.

Our implemented pipelining scheme is shown in Fig. 2.

This pipelining is expected to increase training speed

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

drastically, while introducing relatively small overhead of

buffer registers for storing spiking information of each

neurons. This overhead is around 3k registers, which is

around 2.8% of total registers used.

D. Update Skipping

As the ΔW values rely on the difference between the

output neuron spikes and the target neuron spikes shown as

one-hot-

Inference Energy

Training Power Reduction Over Time

(Measured)

1 Epoch

Skip Rate=3.8%

Skip Rate=81.7%

Fig.4. Analysis of the effect of update skipping mechanism in our system.

Figure reprinted from [16].

encoded vector of the target label, the weight updates for the

entire network is zero if the output neuron spikes and the

target neuron spikes are matching exactly. To exploit this

observation, we implemented an update skipping mechanism,

as shown in Fig. 3. A spike pattern analyzer deserializes the

output and target spikes, and asserts a skip update signal when

they match exactly. When this occurs, the write ports to the

SRAMs are deasserted, and the inputs to the combinational-

logic based weight update value calculation unit is blocked to

prevent unnecessary switching of logics. The effect of this

update-skipping mechanism is shown in Fig.4. The skip

update grows to 94.5% after 100 epochs, and the training

energy compared to inference energy reduces to only 7.5%,

compared to 25.6% in the beginning of the training.

E. Efficient Softmax Implementation

Moreover, we propose an efficient implementation for a

softmax function, which is used during the inference phase in

recent attention mechanisms [14] or for the last layer in the

training phase in classification tasks. The mathematical

definition of softmax is shown in the following equation.

Softmax(�̅�) =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘𝑍𝑘∈𝑍

Notice that the softmax value of vector 𝑧̅ remains the same

even if some constant value is subtracted element-wise. This

property is used in our implementation to restrict the

maximum element value to 0 for better numerical properties.

Fig.5. A naïve softmax implementation

Fig.6. A log-space softmax implementation.

We first show two existing methods for implementing a

softmax function in hardware: a naïve implementation using

dividers, and a log-space implementation which avoids

dividers [15]. Fig. 5 shows the block diagram for naïve

implementation, and Fig.6 shows the block diagram for the

log-space implementation. As it can be seen from the figure,

both implementations require large look-up tables that

exponentially require more resources as bit-precision grows

higher.

TABLE I. Implementation of LUT-based and Iterative Method

 LUT-BASED[15] PROPOSED

Area 37835μm2
1623.6μm2

Energy 240.36pJ 197.09pJ

Cycles 24 321

Power 2.003mW 0.307mW

*Synthesized results in 65nm process

** Our implementation

Fig.7. Proposed iterative softmax implementation.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

We propose a new implementation method for softmax

function that frees the need for expensive look-up tables using

iterative calculation with a multiplier and a 16-entry register

file. We show the block diagram of our implementation in

Fig. 7. Instead of storing all data for every possible case 2𝑁

for fixed point N bit numbers, only N cases are stored. This is

possible through the algorithms described by equation 1 and

equation 2. Equation 1 shows the fixed-point two’s

complement representation of 𝑋𝑄 in N-bit fixed point format

{𝑥0, 𝑥1, … , 𝑥𝑁−1}, 𝑥𝑛 ∈ {0,1} with fraction point at M. By

using the property of exponentials, it could be extended to

using iterative multiplication on each of the bits that are non-

zero as shown in equation 2. The stored values are therefore

N cases; 𝑒2𝑀−𝑛
 for each of n cases (with exception of the

most significant bit, which should be stored as 𝑒2−𝑀
)

𝐸𝑞. 1) 𝑋𝑄 = 2𝑀 ∑ 2−𝑛𝑥𝑛

𝑁−1

𝑛=0

(−1)(𝑛==0)

𝐸𝑞. 2) 𝑒𝑋𝑄 = 𝑒2𝑀 ∑ 2−𝑛𝑥𝑛(−1)(𝑛==0)𝑁−1
𝑛=0

= 𝑒𝑥𝑛2−𝑀
∏ 𝑒𝑥𝑛2𝑀−𝑛

𝑁−1

𝑛=1

By using this iterative approach, bulky look-up tables

could be freed, leading to a lower area and energy per softmax

as shown in Table I. Moreover, our implementation shows

better robustness for the signal-to-noise ratio for a softmax

function with large input dimensions, as shown in Fig. 8. This

may be due to higher precision in exponential values, whereas

the LUT-base implementations have precision bounded by

the lookup table.

LUT-based implmentation

Iterative implementation(ours)

Fig.8. SNR for softmax on input vectors with large dimensions.

III. SIMULATION AND MEASUREMENT

We developed and implemented our digital design using

Vivado on Virtex-7 FPGA. A test environment was provided

using a separate FPGA (XEM7310), as shown in Fig. 9. Our

Verilog implemented model was tested in RTL simulation as

well as on FPGA, and showed error rate of 2.2% on MNIST

test dataset after training for 200 epochs.

Fig.11. Layout of our implemented design.

Fig.12. The verification setup. The opal Kelly FPGA board only processes

data transfers between the PC and our system. Figure reprinted from [16].

Fig.9. Implementation of synthesized design on Virtex-7 FPGA board.

Fig.10. Part of our RTL simulation on classifying multiple MNIST test

images. The image in right is fed to implemented neural network, and the

simulation result is show in the left. It correctly classifies the image, giving

‘4’ the highest score.

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

Design was verified using Opal-kelly board (XEM 7310),

which is a Xilinx FPGA integrated module that provides

application programmable interface (API) such as python,

C++, etc. MNIST images were transmitted to the design

through USB3.0 for high throughput (100.8MHz). Images are

entered to FIFO in the XEM 7310, and our designed

processor calls the FIFO to read images sequentially. 4 pixels

of images are called to the processor in a single time step,

meaning that 32-bits are entered to the processor per clock

cycle. This image data is only read and entered to the design

when the output ‘image-request’ signal is asserted. After

finishing processing on the input image, the processor writes

classification scores of each label, through indicating that

classification scores are ready with ‘output-valid’ signal and

acting as ‘write’ signal to FIFO on Opal-Kelly board. The

RTL simulation result of this testing environment is shown in

fig. 10.

Scores are 14-bit numbers, while first 4 bits only act to

indicate which label it belongs to. By writing python modules

to automatically send image data to the input FIFO in Opal

Kelly board, and decode 14-bit numbers written in output

FIFO to classification scores, we could automate the process

of evaluating performance on classifying the MNIST dataset.

The layout of our implemented system is shown in fig. 11.

Using these verification methods, we also measured our

TSMC 65nm digital chip and verified the functionality. The

verification setup is shown in fig.16. The chip operates at

20~50MHz with a voltage range of 0.8~1.2V. The details of

our chip is summarized in Table II. Our implementation

shows a training throughput of 235.8k FPS on MNIST

dataset, requires 51.3 seconds of real-time training to finish

200 epochs of training. Compared to using a back-

propagation algorithm (BP) deployed in commercial

GPU(Titan-X), GPUs take more than 1104.8 seconds to finish

200 epochs of training. Accounting for the quicker

convergence of BP-algorithms, it takes 63 epochs to reach the

same target accuracy of 97.83%, making our implementation

x5 faster in terms of effective training speed.

V. CONCLUSION

We have adapted an existing SNN algorithm to be

hardware-efficient. This reduced the number of FLOPs to

only 1.1% of the original algorithm, while maintaining

performance on classification. The Verilog design is proved

to show classification functionality, and several rigorous

steps were used to verify that the synthesized and physical

layout design is equivalent to the Verilog design. This work

shows that training neural networks only using spike

communication is feasible and energy efficient.

Moreover, the implemented pipelining scheme, which is

enabled through significantly less buffer registers for

pipelined training, increases training speed drastically while

increasing energy efficiency per image. Our target speed

outruns GPU-accelerated codes run on NVIDIA Titan-X by 5

times on a BP algorithm with a batch size of 64. Finally, our

newly proposed hardware implementation for softmax

function consumes less energy and area compared to prior

works while showing better SNR in large input dimension

sizes.

REFERENCES

[1] Han, Song, Huizi Mao, and William J. Dally. "Deep

compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding."

arXiv preprint arXiv:1510.00149 (2015).

[2] P. A. Merolla et al. "A million spiking-neuron integrated

circuit with a scalable communication network and

interface." Science 345.6197 (2014): 668-673.

[3] P. Knag et al. "A sparse coding neural network ASIC with

on-chip learning for feature extraction and encoding."

IEEE Journal of Solid-State Circuits 50.4 (2015): 1070-

1079.

[4] Guerguiev, Jordan, Timothy P. Lillicrap, and Blake A.

Richards. "Towards deep learning with segregated

dendrites." eLife 6 (2017).

[5] D.-H. Lee et al. "Difference target propagation." Joint

European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, Cham,

2015.

[6] J. K. Kim et al. "Efficient hardware architecture for

sparse coding." IEEE Transactions on Signal Processing

62.16 (2014): 4173-4186.

[7] S. Gonugondla et al. “A 42pJ/Decision 3.12TOPS/W

Roust in-memory machine learning classifier with on-

chip training.” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Jan. 2018, pp. 490-491

[8] A. Amravati et al. “A 55nm time-domain mixed-signal

neuromorphic accelerator with stochastic synapses and

embedded reinforcement learning for autonomous

micro-robots.” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Jan. 2018, pp. 124-125.

[9] C. Tsai et al. “A 41.3/26,7pJ per neuron weight RBM

processor supporting on-chip learning/inference for IoT

applications.” IEEE Journal on Solid-State Circuits

(JSSC), vol. 52, no. 10, pp.2601-2612, Oct. 2017.

TABLE II. Details of our implemented system

 OUR WORK

Technology 65nm

On-Chip Training Yes

MNIST Accuracy 97.83%

Algorithm SNN

Prediction Energy 236.nJ/Image

Training Overhead 7.5%*

Throughput (Inference) 100K-250K FPS

Throughput (Training) 94.3K-235.8K FPS

Power 23.6mW-96.2mW

Supply Voltage 0.8V-1.2V

Frequency 20-50MHz

Efficiency 3.40 TOPS/W

*Average of 100 training epochs

IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020 http://www.idec.or.kr

[10] P. Whatmough et al. “A 28nm SoC with a 1.2GHz

568nJ/prediction sparse deep-neural-network engine

with >0.1 timing error rate tolerance for IoT

applications.” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Jan. 2017, pp. 242-243.

[11] F. Buhler, et al., “A 3.43TOPS/W 48.9pJ/Pixel

50.1nJ/Classification 512 analog neuron sparse coding

neural network with on-chip learning and classification

in 40nm CMOS.” in IEEE Int. Symp. VLSI Circuits

Dig. Tech. Papers, June 2017, pp. 30-31

[12] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640M

pixel/s 3.65mW sparse event-driven neuromorphic

object recognition processor with on-chip Learning” in

IEEE Int. Symp. VLSI Circuits Dig. Tech. Papers, June

2015, pp. 61–62

[13] S. Esser et al. “Back propagation for energy-efficient

neuromorphic computing.” Advances in Neural

Information Processing Systems (NIPS), 2015.

[14] A. Vaswani et. al, “Attention is all you need,”

arXiv:1706.03762 [cs.CL], Jun. 2017.

[15] B. Yuan, “Efficient hardware architecture of softmax

layer in deep neural network,” in Proc. IEEE

International System-on-Chip Conference (SOCC),

Sep. 2016.

[16] J. Park, J. Lee, and D. Jeon. "A 65-nm Neuromorphic

Image Classification Processor with Energy-Efficient

Training Through Direct Spike-Only Feedback." IEEE

Journal of Solid-State Circuits 55.1 (2019): 108-119.

Jeongwoo Park received the B.S.

degree from the department of

electrical and computer engineering,

Seoul National University, Seoul,

South Korea, in 2017, where he is

currently pursuing the Ph.D. degree.

His research interests include

neuromorphic algorithms and

systems, quantized neural network

training, and efficient ASIC design

for deep learning inference/training.

Dong Suk Jeon received the B.S.

degree in electrical engineering from

Seoul National University, Korea, in

2009, and Ph.D degree from

University of Michigan, Ann Arbor,

MI, in 2014. He is currently an

assistant professor in Seoul National

University, Korea.

His main interests are digital signal

processing, low power integrated

circuits, System-on-Chip (SoC)

architecture.

