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Abstract - In this paper, we present a neuromorphic processor 

that could learn to classify images through spiking information 

between neurons. Data is only computed locally, and there is no 

need for energy-hungry data transmissions that is required for 

any other machine learning algorithms. Careful algorithmic 

adaptations, along with novel hardware implementation of 

softmax functions are introduced to deliver maximum 

performance on image classification tasks while minimizing 

energy consumption. The design was fabricated in TSMC 65nm 

technology and consumes mere 23.6mW at a scaled voltage of 

0.8V with 20MHz clock frequency, while showing a throughput 

of 73.9M pixels/second for supervised training on handwritten 

images. 
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I. INTRODUCTION 

 

Artificial neural networks (ANN) have shown great 

success in computer vision tasks such as MNIST, CIFAR, 

ImageNet, etc. A special type of artificial neural network is 

spiking neural networks (SNN). Instead of using continuous-

valued activation values, SNN uses binarized activations just 

like biological neurons. Apart from the fact that SNNs are 

more biologically plausible than standard neural networks, 

SNNs could be advantageous in terms of energy efficiency 

over standard ANNs in hardware implementations. This is 

mostly because of reduced data transmissions between 

processing elements, since only one bit is required to 

represent activations of neurons [1]. 

However, this reduction in data transmission is no longer 

possible to build a back-propagation based training processor. 

Back-propagation requires that a continuous value to be 

propagated between neurons: this breaks our assumption that 

only spikes communicate between processing elements. 

Because of this, most neuromorphic chips either focused on 

implementing only inference, such as the TrueNorth chip 

developed by IBM [2], or used a spike-timing-dependent-

plasticity (STDP) rule [3], which often shows poorer 

performance compared to back-propagation based learning, 

to avoid this constraint.  

In this paper, we introduce a neuromorphic processor, 

extending our prior work [16] with the focus on the design 

process and efficient hardware implementation of the softmax 

function. In section II A-B, we summarize the general system 

with the work from [16]. The adopted algorithm, a variant of 

difference target propagation [5], has the property that there 

is no high bit-width error path required for training, while 

maintaining a relatively high performance in classifying 

images. Moreover, the spiking nature of the feedbacks allow 

hardware designers to exploit sparsity without modifying the 

original algorithm, enabling energy-efficient training. 

II. SYSTEM DESIGN 

A. Algorithm Adaptation 

The original algorithm described in [4] has some properties 

which are not desirable in digital hardware implementation. 

The main drawback is that it uses a double exponential post-

synaptic potential for transition of spike data into internal 

neuron voltage.  
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Since exponential functions are hard to implement in 

digital circuits efficiently, we have developed a different 

kernel that would significant reduce hardware overhead. The 

computational saving by implementing our own kernel is 

shown by calculating the theoretical number of FLOPs 

required in each time step. Using double exponential kernels, 

409,840 FLOPs are required per timestep, while only 4,570 

is required on average using implemented kernel.  

 

B. Processor Architecture 

The processor has an architecture of 1 input layer with 784 

neurons, 2 hidden layers with 200 neurons each, and an output 

layer with 10 neurons. As shown in Fig. 2, each hidden neuron 

has RAMs that contains synaptic weights, and tracks how 

many times they have been called.  

  Although having one RAM per neuron is more desirable in 

terms of energy savings and biological similarity, it is often 

area-inefficient as smaller RAMs result in more area 

overhead to implement the same amount of memory. Thus, 

we have decided on 5 neurons sharing a single RAM by 

increasing the width of the RAM. This was possible since the 

implemented algorithm requires the same column of the 

RAM to be called at each time step.  

Fig. 1 shows the overall architecture of implemented 

design. All communication between neurons are transmitted 
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through spike decoders, which translates spiking information 

to addresses. This architecture is expected to increase area 

efficiency, as connecting neurons to every neuron in the next 

layer will cause connecting wires to dominate area usage [6].  

Inside the hidden layers in Fig.1, 200 neurons in a neuron 

clusters, along with two buffer memories totaling 2.2 or 

4.8Kb and an update-value calculation unit with a sigmoid 

 

Fig. 1. Block diagram of implemented design, from hidden neuron, 

hidden layer, and top-level. Figure reprinted from [16]. 
 

function implemented as LUT. Inside the hidden neuron 

clusters, 5 neurons share a weight memory for higher area 

efficiency. 

The hidden neuron in Fig. 1 shows that each hidden neuron 

accumulates three values: previous layer spikes, output layer 

spikes, and target spikes. The accumulated value of previous 

layer spikes is used to determine the firing probability of that 

neuron, and accumulated value from output layer spikes and 

target spikes are used to calculate weight update values. 

 

C. Pipelining 

To achieve efficient training, we propose to pipeline steps 

required for updating on an image by breaking down training 

procedures to layer processing and update value processing. 

Unlike conventional deep learning algorithms, this SNN 

algorithm relies on very small number of global spiking 

information to update its weights. This enables efficient 

pipelining, as other algorithms will require unrealistic 

 
Fig. 2. The pipelining scheme and out-of-order updates. Figure 

reprinted from [16]. 
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Fig.3. The update skipping mechanism implemented for our system. 

Figure reprinted from [16]. 
 

number of buffer registers for pipelining update value 

processing step, which is disastrous for both area and power 

of digital system. Moreover, update value in each column is 

identical for processing on a single image, which further 

reduces buffer register overhead for pipelined training. 

Our implemented pipelining scheme is shown in Fig. 2. 

This pipelining is expected to increase training speed 



IDEC Journal of Integrated Circuits and Systems, VOL 6, No.2, April. 2020                                                              http://www.idec.or.kr 

drastically, while introducing relatively small overhead of 

buffer registers for storing spiking information of each 

neurons. This overhead is around 3k registers, which is 

around 2.8% of total registers used. 

D. Update Skipping 

As the ΔW values rely on the difference between the 

output neuron spikes and the target neuron spikes shown as 

one-hot-

Inference Energy

Training Power Reduction Over Time 

(Measured)

1 Epoch

Skip Rate=3.8%

Skip Rate=81.7%

 
Fig.4. Analysis of the effect of update skipping mechanism in our system. 

Figure reprinted from [16]. 
 

encoded vector of the target label, the weight updates for the 

entire network is zero if the output neuron spikes and the 

target neuron spikes are matching exactly. To exploit this 

observation, we implemented an update skipping mechanism, 

as shown in Fig. 3. A spike pattern analyzer deserializes the 

output and target spikes, and asserts a skip update signal when 

they match exactly. When this occurs, the write ports to the 

SRAMs are deasserted, and the inputs to the combinational-

logic based weight update value calculation unit is blocked to 

prevent unnecessary switching of logics. The effect of this 

update-skipping mechanism is shown in Fig.4. The skip 

update grows to 94.5% after 100 epochs, and the training 

energy compared to inference energy reduces to only 7.5%, 

compared to 25.6% in the beginning of the training. 

 

E. Efficient Softmax Implementation 

 

Moreover, we propose an efficient implementation for a 

softmax function, which is used during the inference phase in 

recent attention mechanisms [14] or for the last layer in the 

training phase in classification tasks. The mathematical 

definition of softmax is shown in the following equation. 

Softmax(�̅�) =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘𝑍𝑘∈𝑍

 

Notice that the softmax value of vector 𝑧̅ remains the same 

even if some constant value is subtracted element-wise. This 

property is used in our implementation to restrict the 

maximum element value to 0 for better numerical properties.  

Fig.5. A naïve softmax implementation 

 

Fig.6. A log-space softmax implementation. 

We first show two existing methods for implementing a 

softmax function in hardware: a naïve implementation using 

dividers, and a log-space implementation which avoids 

dividers [15]. Fig. 5 shows the block diagram for naïve 

implementation, and Fig.6 shows the block diagram for the 

log-space implementation. As it can be seen from the figure, 

both implementations require large look-up tables that 

exponentially require more resources as bit-precision grows 

higher. 

TABLE I. Implementation of LUT-based and Iterative Method 

 LUT-BASED[15] PROPOSED 

Area 37835μm2 
1623.6μm2 

Energy 240.36pJ 197.09pJ 

Cycles 24 321 

Power 2.003mW 0.307mW 

*Synthesized results in 65nm process 

** Our implementation 

Fig.7. Proposed iterative softmax implementation. 
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We propose a new implementation method for softmax 

function that frees the need for expensive look-up tables using 

iterative calculation with a multiplier and a 16-entry register 

file. We show the block diagram of our implementation in 

Fig. 7. Instead of storing all data for every possible case 2𝑁 

for fixed point N bit numbers, only N cases are stored. This is 

possible through the algorithms described by equation 1 and 

equation 2. Equation 1 shows the fixed-point two’s 

complement representation of 𝑋𝑄 in N-bit fixed point format 

{𝑥0, 𝑥1, … , 𝑥𝑁−1}, 𝑥𝑛 ∈ {0,1}  with fraction point at M. By 

using the property of exponentials, it could be extended to 

using iterative multiplication on each of the bits that are non-

zero as shown in equation 2. The stored values are therefore 

N cases; 𝑒2𝑀−𝑛
 for each of n cases (with exception of the 

most significant bit, which should be stored as 𝑒2−𝑀
) 

 

 

𝐸𝑞. 1)   𝑋𝑄 = 2𝑀 ∑ 2−𝑛𝑥𝑛

𝑁−1

𝑛=0
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By using this iterative approach, bulky look-up tables 

could be freed, leading to a lower area and energy per softmax 

as shown in Table I. Moreover, our implementation shows 

better robustness for the signal-to-noise ratio for a softmax 

function with large input dimensions, as shown in Fig. 8. This 

may be due to higher precision in exponential values, whereas 

the LUT-base implementations have precision bounded by 

the lookup table. 

LUT-based implmentation

Iterative implementation(ours)

 
Fig.8. SNR for softmax on input vectors with large dimensions. 

III. SIMULATION AND MEASUREMENT 

We developed and implemented our digital design using 

Vivado on Virtex-7 FPGA. A test environment was provided 

using a separate FPGA (XEM7310), as shown in Fig. 9. Our 

Verilog implemented model was tested in RTL simulation as 

well as on FPGA, and showed error rate of 2.2% on MNIST 

test dataset after training for 200 epochs.  
 

 
Fig.11. Layout of our implemented design. 

 
Fig.12. The verification setup. The opal Kelly FPGA board only processes 

data transfers between the PC and our system. Figure reprinted from [16]. 

 

 

Fig.9. Implementation of synthesized design on Virtex-7 FPGA board. 

Fig.10. Part of our RTL simulation on classifying multiple MNIST test 

images. The image in right is fed to implemented neural network, and the 

simulation result is show in the left. It correctly classifies the image, giving 

‘4’ the highest score. 
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Design was verified using Opal-kelly board (XEM 7310), 

which is a Xilinx FPGA integrated module that provides 

application programmable interface (API) such as python, 

C++, etc. MNIST images were transmitted to the design 

through USB3.0 for high throughput (100.8MHz). Images are 

entered to FIFO in the XEM 7310, and our designed 

processor calls the FIFO to read images sequentially. 4 pixels 

of images are called to the processor in a single time step, 

meaning that 32-bits are entered to the processor per clock 

cycle. This image data is only read and entered to the design 

when the output ‘image-request’ signal is asserted. After 

finishing processing on the input image, the processor writes 

classification scores of each label, through indicating that 

classification scores are ready with ‘output-valid’ signal and 

acting as ‘write’ signal to FIFO on Opal-Kelly board. The 

RTL simulation result of this testing environment is shown in 

fig. 10. 

Scores are 14-bit numbers, while first 4 bits only act to 

indicate which label it belongs to. By writing python modules 

to automatically send image data to the input FIFO in Opal 

Kelly board, and decode 14-bit numbers written in output 

FIFO to classification scores, we could automate the process 

of evaluating performance on classifying the MNIST dataset. 

The layout of our implemented system is shown in fig. 11.  

Using these verification methods, we also measured our 

TSMC 65nm digital chip and verified the functionality. The 

verification setup is shown in fig.16. The chip operates at 

20~50MHz with a voltage range of 0.8~1.2V. The details of 

our chip is summarized in Table II. Our implementation 

shows a training throughput of 235.8k FPS on MNIST 

dataset, requires 51.3 seconds of real-time training to finish 

200 epochs of training. Compared to using a back-

propagation algorithm (BP) deployed in commercial 

GPU(Titan-X), GPUs take more than 1104.8 seconds to finish 

200 epochs of training. Accounting for the quicker 

convergence of BP-algorithms, it takes 63 epochs to reach the 

same target accuracy of 97.83%, making our implementation 

x5 faster in terms of effective training speed. 

 

V. CONCLUSION 

  

We have adapted an existing SNN algorithm to be 

hardware-efficient. This reduced the number of FLOPs to 

only 1.1% of the original algorithm, while maintaining 

performance on classification. The Verilog design is proved 

to show classification functionality, and several rigorous 

steps were used to verify that the synthesized and physical 

layout design is equivalent to the Verilog design. This work 

shows that training neural networks only using spike 

communication is feasible and energy efficient.  

Moreover, the implemented pipelining scheme, which is 

enabled through significantly less buffer registers for 

pipelined training, increases training speed drastically while 

increasing energy efficiency per image. Our target speed 

outruns GPU-accelerated codes run on NVIDIA Titan-X by 5 

times on a BP algorithm with a batch size of 64. Finally, our 

newly proposed hardware implementation for softmax 

function consumes less energy and area compared to prior 

works while showing better SNR in large input dimension 

sizes. 
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