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Abstract - In this paper, we present a neuromorphic processor
that could learn to classify images through spiking information
between neurons. Data is only computed locally, and there is no
need for energy-hungry data transmissions that is required for
any other machine learning algorithms. Careful algorithmic
adaptations, along with novel hardware implementation of
softmax functions are introduced to deliver maximum
performance on image classification tasks while minimizing
energy consumption. The design was fabricated in TSMC 65nm
technology and consumes mere 23.6mW at a scaled voltage of
0.8V with 20MHz clock frequency, while showing a throughput
of 73.9M pixels/second for supervised training on handwritten
images.
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I. INTRODUCTION

Artificial neural networks (ANN) have shown great
success in computer vision tasks such as MNIST, CIFAR,
ImageNet, etc. A special type of artificial neural network is
spiking neural networks (SNN). Instead of using continuous-
valued activation values, SNN uses binarized activations just
like biological neurons. Apart from the fact that SNNs are
more biologically plausible than standard neural networks,
SNNs could be advantageous in terms of energy efficiency
over standard ANNs in hardware implementations. This is
mostly because of reduced data transmissions between
processing elements, since only one bit is required to
represent activations of neurons [1].

However, this reduction in data transmission is no longer
possible to build a back-propagation based training processor.
Back-propagation requires that a continuous value to be
propagated between neurons: this breaks our assumption that
only spikes communicate between processing elements.
Because of this, most neuromorphic chips either focused on
implementing only inference, such as the TrueNorth chip
developed by IBM [2], or used a spike-timing-dependent-
plasticity (STDP) rule [3], which often shows poorer
performance compared to back-propagation based learning,
to avoid this constraint.

In this paper, we introduce a neuromorphic processor,
extending our prior work [16] with the focus on the design
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process and efficient hardware implementation of the softmax
function. In section II A-B, we summarize the general system
with the work from [16]. The adopted algorithm, a variant of
difference target propagation [5], has the property that there
is no high bit-width error path required for training, while
maintaining a relatively high performance in classifying
images. Moreover, the spiking nature of the feedbacks allow
hardware designers to exploit sparsity without modifying the
original algorithm, enabling energy-efficient training.

II. SYSTEM DESIGN

A. Algorithm Adaptation

The original algorithm described in [4] has some properties
which are not desirable in digital hardware implementation.
The main drawback is that it uses a double exponential post-
synaptic potential for transition of spike data into internal

neuron voltage.
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Since exponential functions are hard to implement in
digital circuits efficiently, we have developed a different
kernel that would significant reduce hardware overhead. The
computational saving by implementing our own kernel is
shown by calculating the theoretical number of FLOPs
required in each time step. Using double exponential kernels,
409,840 FLOPs are required per timestep, while only 4,570
is required on average using implemented kernel.

B. Processor Architecture

The processor has an architecture of 1 input layer with 784
neurons, 2 hidden layers with 200 neurons each, and an output
layer with 10 neurons. As shown in Fig. 2, each hidden neuron
has RAMs that contains synaptic weights, and tracks how
many times they have been called.

Although having one RAM per neuron is more desirable in
terms of energy savings and biological similarity, it is often
area-inefficient as smaller RAMs result in more area
overhead to implement the same amount of memory. Thus,
we have decided on 5 neurons sharing a single RAM by
increasing the width of the RAM. This was possible since the
implemented algorithm requires the same column of the
RAM to be called at each time step.

Fig. 1 shows the overall architecture of implemented
design. All communication between neurons are transmitted
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through spike decoders, which translates spiking information
to addresses. This architecture is expected to increase area
efficiency, as connecting neurons to every neuron in the next
layer will cause connecting wires to dominate area usage [6].

Inside the hidden layers in Fig.1, 200 neurons in a neuron
clusters, along with two buffer memories totaling 2.2 or
4.8Kb and an update-value calculation unit with a sigmoid
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Fig. 1. Block diagram of implemented design, from hidden neuron,
hidden layer, and top-level. Figure reprinted from [16].

function implemented as LUT. Inside the hidden neuron
clusters, 5 neurons share a weight memory for higher area
efficiency.

The hidden neuron in Fig. 1 shows that each hidden neuron
accumulates three values: previous layer spikes, output layer
spikes, and target spikes. The accumulated value of previous
layer spikes is used to determine the firing probability of that
neuron, and accumulated value from output layer spikes and
target spikes are used to calculate weight update values.
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C. Pipelining

To achieve efficient training, we propose to pipeline steps
required for updating on an image by breaking down training
procedures to layer processing and update value processing.
Unlike conventional deep learning algorithms, this SNN
algorithm relies on very small number of global spiking
information to update its weights. This enables efficient
pipelining, as other algorithms will require unrealistic

212 cycles nme
|
Hidden
rert : - e "
T | — -
(I '
Hidden o !
Layer2| | | | : Image A Image B Image C Image D
1 T | E Past :_
-------- 1
Output I Image Processing |
Layer : i : Image A Image B |imagec| [LEEE0
e H \ \ \
‘\ AW v\ AW N AW
wcalculation .,calculahon 4ca\culahon
for Img at for Img BY for ImgC
Wupdate Wupdate
for Img A for Img B

Fig. 2. The pipelining scheme and out-of-order updates. Figure
reprinted from [16].
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Fig.3. The update skipping mechanism implemented for our system.
Figure reprinted from [16].

number of buffer registers for pipelining update value
processing step, which is disastrous for both area and power
of digital system. Moreover, update value in each column is
identical for processing on a single image, which further
reduces buffer register overhead for pipelined training.

Our implemented pipelining scheme is shown in Fig. 2.
This pipelining is expected to increase training speed
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drastically, while introducing relatively small overhead of
buffer registers for storing spiking information of each
neurons. This overhead is around 3k registers, which is
around 2.8% of total registers used.

D. Update Skipping

As the AW values rely on the difference between the
output neuron spikes and the target neuron spikes shown as
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Fig.4. Analysis of the effect of update skipping mechanism in our system.
Figure reprinted from [16].

encoded vector of the target label, the weight updates for the
entire network is zero if the output neuron spikes and the
target neuron spikes are matching exactly. To exploit this
observation, we implemented an update skipping mechanism,
as shown in Fig. 3. A spike pattern analyzer deserializes the
output and target spikes, and asserts a skip update signal when
they match exactly. When this occurs, the write ports to the
SRAMs are deasserted, and the inputs to the combinational-
logic based weight update value calculation unit is blocked to
prevent unnecessary switching of logics. The effect of this
update-skipping mechanism is shown in Fig.4. The skip
update grows to 94.5% after 100 epochs, and the training
energy compared to inference energy reduces to only 7.5%,
compared to 25.6% in the beginning of the training.

E. Efficient Softmax Implementation
Moreover, we propose an efficient implementation for a

softmax function, which is used during the inference phase in
recent attention mechanisms [14] or for the last layer in the

19

http://www.idec.or.kr

training phase in classification tasks. The mathematical
definition of softmax is shown in the following equation.
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Notice that the softmax value of vector Z remains the same
even if some constant value is subtracted element-wise. This
property is used in our implementation to restrict the
maximum element value to 0 for better numerical properties.
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Fig.7. Proposed iterative softmax implementation.

TABLE I. Implementation of LUT-based and Iterative Method

LUT-BASED[15] PROPOSED

Area 37835um’ 1623.6um?

Energy 240.36p] 197.09p7
Cycles 24 321

Power 2.003mW 0.307mW

*Synthesized results in 65nm process
** Qur implementation

We first show two existing methods for implementing a
softmax function in hardware: a naive implementation using
dividers, and a log-space implementation which avoids
dividers [15]. Fig. 5 shows the block diagram for naive
implementation, and Fig.6 shows the block diagram for the
log-space implementation. As it can be seen from the figure,
both implementations require large look-up tables that
exponentially require more resources as bit-precision grows
higher.
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We propose a new implementation method for softmax
function that frees the need for expensive look-up tables using
iterative calculation with a multiplier and a 16-entry register
file. We show the block diagram of our implementation in
Fig. 7. Instead of storing all data for every possible case 2V
for fixed point N bit numbers, only N cases are stored. This is
possible through the algorithms described by equation 1 and
equation 2. Equation 1 shows the fixed-point two’s
complement representation of X, in N-bit fixed point format
{x0, %1, . ,xy_1}, xn € {0,1} with fraction point at M. By
using the property of exponentials, it could be extended to
using iterative multiplication on each of the bits that are non-
zero as shown in equation 2. The stored values are therefore

M- . .
N cases; e for each of n cases (with exception of the
. . . . -M
most significant bit, which should be stored as e? )

N-1
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By using this iterative approach, bulky look-up tables
could be freed, leading to a lower area and energy per softmax
as shown in Table I. Moreover, our implementation shows
better robustness for the signal-to-noise ratio for a softmax
function with large input dimensions, as shown in Fig. 8. This
may be due to higher precision in exponential values, whereas
the LUT-base implementations have precision bounded by
the lookup table.
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Fig.8. SNR for softmax on input vectors with large dimensions.
I1I. SIMULATION AND MEASUREMENT

We developed and implemented our digital design using
Vivado on Virtex-7 FPGA. A test environment was provided
using a separate FPGA (XEM7310), as shown in Fig. 9. Our
Verilog implemented model was tested in RTL simulation as
well as on FPGA, and showed error rate of 2.2% on MNIST
test dataset after training for 200 epochs.

http://www.idec.or.kr

Fig.9. Implementation of synthesized design on Virtex-7 FPGA board.

0 5 10 15 20 5

Fig.10. Part of our RTL simulation on classifying multiple MNIST test
images. The image in right is fed to implemented neural network, and the
simulation result is show in the left. It correctly classifies the image, giving
‘4’ the highest score.
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Fig.12. The verification setup. The opal Kelly FPGA board only processes
data transfers between the PC and our system. Figure reprinted from [16].
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TABLE II. Details of our implemented system

OUR WORK

Technology 65nm
On-Chip Training Yes
MNIST Accuracy 97.83%

Algorithm SNN
Prediction Energy 236.nJ/Image
Training Overhead 7.5%"

Throughput (Inference) 100K-250K FPS

Throughput (Training) 94.3K-235.8K FPS
Power 23.6mW-96.2mW
Supply Voltage 0.8V-1.2V
Frequency 20-50MHz
Efficiency 3.40 TOPS/W

*Average of 100 training epochs

Design was verified using Opal-kelly board (XEM 7310),
which is a Xilinx FPGA integrated module that provides
application programmable interface (API) such as python,
C++, etc. MNIST images were transmitted to the design
through USB3.0 for high throughput (100.8MHz). Images are
entered to FIFO in the XEM 7310, and our designed
processor calls the FIFO to read images sequentially. 4 pixels
of images are called to the processor in a single time step,
meaning that 32-bits are entered to the processor per clock
cycle. This image data is only read and entered to the design
when the output ‘image-request’ signal is asserted. After
finishing processing on the input image, the processor writes
classification scores of each label, through indicating that
classification scores are ready with ‘output-valid’ signal and
acting as ‘write’ signal to FIFO on Opal-Kelly board. The
RTL simulation result of this testing environment is shown in
fig. 10.

Scores are 14-bit numbers, while first 4 bits only act to
indicate which label it belongs to. By writing python modules
to automatically send image data to the input FIFO in Opal
Kelly board, and decode 14-bit numbers written in output
FIFO to classification scores, we could automate the process
of evaluating performance on classifying the MNIST dataset.
The layout of our implemented system is shown in fig. 11.

Using these verification methods, we also measured our
TSMC 65nm digital chip and verified the functionality. The
verification setup is shown in fig.16. The chip operates at
20~50MHz with a voltage range of 0.8~1.2V. The details of
our chip is summarized in Table II. Our implementation
shows a training throughput of 235.8k FPS on MNIST
dataset, requires 51.3 seconds of real-time training to finish
200 epochs of training. Compared to using a back-
propagation algorithm (BP) deployed in commercial
GPU(Titan-X), GPUs take more than 1104.8 seconds to finish
200 epochs of training. Accounting for the quicker
convergence of BP-algorithms, it takes 63 epochs to reach the
same target accuracy of 97.83%, making our implementation
x5 faster in terms of effective training speed.
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V. CONCLUSION

We have adapted an existing SNN algorithm to be
hardware-efficient. This reduced the number of FLOPs to
only 1.1% of the original algorithm, while maintaining
performance on classification. The Verilog design is proved
to show classification functionality, and several rigorous
steps were used to verify that the synthesized and physical
layout design is equivalent to the Verilog design. This work
shows that training neural networks only using spike
communication is feasible and energy efficient.

Moreover, the implemented pipelining scheme, which is
enabled through significantly less buffer registers for
pipelined training, increases training speed drastically while
increasing energy efficiency per image. Our target speed
outruns GPU-accelerated codes run on NVIDIA Titan-X by 5
times on a BP algorithm with a batch size of 64. Finally, our
newly proposed hardware implementation for softmax
function consumes less energy and area compared to prior
works while showing better SNR in large input dimension
sizes.
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