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Abstract - The closed-loop neural stimulation system's biggest 

concern is an artifact with more than tens of mV occurs due to 

stimulation. Previous studies have digitized the input signals 

through the analog-to-digital converter (ADC) after using 

amplifiers to measure tens of 𝛍 V neural signals. Since the 

amplifier reduces the input range, the amplifier's output is 

saturated when a large stimulation artifact appears. This chip 

design uses the 2nd-order continuous delta-sigma modulator 

(DSM) to measure signals without saturation even if 

stimulation artifacts are entered with the neural signal. Overall, 

circuit structures were designed with a focus on stable 

operation even if a sudden large signal came in. Also, it can 

quickly track the sudden change of signals by adding an auto-

ranging algorithm. We present 16 channel neural recording 

chip with a 65-nm CMOS process and the entire chip area is 1 

mm2 with 49𝛍W power consumption. Input-referred integrated 

noise from dc to 500 Hz was 0.89 𝛍Vrms, and more than 93 dB 

input dynamic range were guaranteed. 

Keywords—Analog-to-digital converter (ADC), Closed-loop 

neural recording, Delta-sigma modulator (DSM) 

I. INTRODUCTION

Diverse structures have been proposed over the past 

decades to measure tens of μV neural signals. Among them, 

the most famous structure is composed of the high gain 

amplifier with low-resolution ADC [1]-[4]. Neural signals 

are amplified to the tens of mV range and digitized by the 

ADC with low resolution. Meanwhile, numerous recent 

structures intend to use extremely low supply voltages to 

drive circuits with low power [5]. Thus, the input range of 

the recording system gets smaller when using the amplifier. 

In the closed-loop neural recording system, electrical 

stimulation artifacts are measured together with neural 

signals. This makes it impossible to measure the neural 

signal by saturating the output of the amplifier during the 

stimulation phase [6]. Moreover, when the input signal 

passes the amplifier, distortion and noise are included which 

also deteriorates the  

(a) 

  (b)        (c) 

Fig. 1. Previous neural recording structures; (a) Low noise amplifier with 

low resolution ADC [1], [2] (b) Conventional DSM structure and (c) DSM 
structure with feedback integrator [7].  

performance of the output signal. Thus, the structure using 

the amplifier is not appropriate for the closed-loop neural 

recording system. 

In order to digitize a signal without using an amplifier, the 

quantization noise (Q-noise) level of the ADC must be 

smaller than the neural signal. ADCs with high resolution or 

methods that can reduce the size of the Q-noise itself should 

be used to record neural signals. High-resolution ADC is one 

way to reduce the Q-noise, but it requires a lot of power and 

area which is not preferred in the closed-loop system. DSM 

ADCs can be another solution to reduce in-band Q-noise 

through noise-shaping characteristics. Especially, 

continuous-time DSM ADCs have an intrinsic anti-aliasing 

filtering effect. Because the sampling is conducted behind 

the integrator which acts as a low-pass filter.  

Linearity is one of the important factors in the recording 

system which is directly related to the harmonics in the 

output signal. Due to the nonlinearity characteristic of 

MOSFET, the linearity problem gets more serious as the 

input signal increases. The feedback path integrator restores 

the input signal as shown in Fig. 1(c) to lessen the 

integrator’s input [7]. Even if the input signal requires more 

than 50 dB dynamic range (DR), the required integrator’s 

DR can be reduced to 20 dB by using this structure. 
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The output of DSM can be calculated by integrating the 

result of the quantizer. Previous studies usually use a 1-bit 

quantizer to simplify the structure and increase the linearity. 

Thus, if a large sudden signal, such as a stimulation artifact, 

enters, the system cannot quickly track the signal because of 

the constant update size of the 1-bit quantizer. The update 

size of the 1-bit quantizer’s output has a trade-off between 

the speed of tracking the signal and the resolution. This 

problem can be solved by using a multi-bit quantizer instead 

of a 1-bit quantizer. However, when a multibit quantizer is 

used, the linearity of the quantizer itself is getting lower [8].  

This paper is an improved version of [9]. We increase the 

supply voltage to solve the channel stability issue. Also, we 

redesign the integrator to improve the noise characteristics. 

The overall structure is the 2nd-order continuous DSM 

structure for ECoG closed-loop neural recording 

applications. To make the variable update size depending on 

the input signal, we changed the updated amount of the 1-bit 

quantizer bit following the input signal. This structure can 

achieve the intrinsic linearity of the 1-bit quantizer while 

obtaining the effect of the multi-bit quantizer. 

II. DESIGN AND EXPERIMENTS 

A. Circuit design and implementation 

Fig. 2. shows the overall circuit architecture of 16 channel 

neural recording structure. Each channel uses the 2nd-order 

DSM structure, and it predicts an input signal through a 12-

bit capacitive bridge DAC. The feedback path restores the 

input signals using digital integrators which are composed of 

the up/down counter. Only the difference in the input signal 

enters the feedforward integrator. Also, it can track input 

signals faster by using a variable up/down counter that can 

change the size of a 1-bit quantizer. 

The capacitive sensing structure is used in this design and 

the common mode of the input terminal is defined through a 

switch connected to the VCM. The leakage current through 

the switch can make a serious noise due to the high input 

impedance node of this system. Therefore, to minimize the 

leakage current, the switch was designed to have a resistance 

of about several hundred TΩ when the switch is turned off. 

When the input signal passes through the amplifier, the 

noise from the amplifier is added to the signal. Noise from 

the amplifier must be minimized to maintain high SNR 

signal. In a multistage amplifier, noise generated by the 

back-end amplifier is divided by the gain of the front-end 

amplifier. Thus, the input-referred noise of the amplifier is 

mainly determined by the first stage. Fig. 3. shows a 

simplified version of the 1st stage amplifier to examine the 

noise generated in the amplifier. In this structure, since 

flicker noise was removed using the chopping structure, only 

the thermal noise of the MOSFET is considered and 

analyzed. The noise of the MOSFET can be expressed as Vni, 

which is calculated as (1). Cf represents the capacitance 

viewed toward the capacitive DAC and Cgs is the parasitic 

capacitance between the gate and source of the transistor, 

which depends on the width (W), overlap capacitance, and 

oxide capacitance [10]. As shown in (1), the noise created by 

the MOSFET decreases as the gm value increases, so as the 

W/L value increases, the noise decreases. On the other hand,  

 

Fig. 2. Entire 16 channel circuit implementation and detailed one channel 
circuit diagram [11]. 

 
    (a)       (b) 

Fig. 3. Simplified capacitive sensing structure; (a) Input referred noise of 
the amplifier and (b) input transferred noise modeling. 

 

 
Fig. 4. Cadence simulation result of integrated amplifier’s input-referred 
noise from dc to 500 Hz. It represents the noise according to the width of 

the amplifier 
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the Cgs value increases as the length (L) and width (W) 

increase and it causes a problem in the capacitive sensing 

structure. Fig. 3(b) represents the noise transferred to the 

input terminal and it can be described as (3). Since W and 

Cgs have a linear relationship, the relationship between Cgs 

and W was simplified u·W to see the effect of W in the Vnieq 

[10]. If u·W is smaller than the Cf and Cin, the Vnieq value 

becomes smaller when the W is increased. However, u·W 
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becomes 

 
Fig. 5. Designed 2-stage amplifier with different CMFB structures. 

 

 
(a) 

 
   (b) 

Fig. 6. Proposed auto-ranging structure; (a) Algorithm of auto-ranging and 
(b) example of an algorithm of auto-ranging. 

similar to Cf and Cin, the Vnieq increases according to the W. 

Thus, it is necessary to optimize input noise by adjusting the 

W. Fig. 4. shows the plot of the input noise according to 

width through cadence simulation, and the design was 

performed according to the optimal point shown in the 

figure. 

Fig. 5. represents the structure of the 2-stage amplifier. 

The current source used in the 2nd stage amplifier could be 

designed as a resistor or current mirror. When using the 

current mirror as a current source it could be a more stable 

structure than using a resistor. However, it cannot supply a 

current variably when a sudden change of signal enters the 

input. Thus, a resistance that operates well in a more variable 

environment is adopted as a current source. 

The common-mode feedback (CMFB) in the 1st and 2nd 

stage amplifiers are designed differently. The CMFB of the 

1st stage has a differential amplifying structure while the 2nd 

stage CMFB is accomplished by switched capacitor 

structure. As the amplified signal enters the 2nd stage of 

CMFB, a linearity issue would arise when using differential 

amplifying CMFB. Thus, we choose the switched capacitor 

CMFB as the 2nd stage CMFB. 

In this study, we present auto-ranging algorithms to update 

the 1-bit quantizer size variably by using the previous signal. 

The algorithm of auto-ranging is illustrated in Fig. 6(a). The 

y[n] is the feedback value and can be calculated by 2 to the 

power of E[n]. The E[n] represents the update size and may 

increase from 0 to 7. The update size is determined by the 

result of the previous comparator's output sign which is 

stored in the D flip-flop. The previous five comparator 

results are stacked in the D flip-flop and determine the E[n] 

value. D[n] should have a positive sign more than five times 

to increase the E[n]. When the large signal comes in, E[n] 

changes at least after five samples. After that, if the next D[n] 

is still the same as D[n-1], the value of E[n] increases for 

each sampling period to quickly catch up with the signal. 

However, if the D[n] changes 1 and 0 consecutively, this 

means that the reconstructed signal already followed the 

input value as shown in Fig. 6(b). To increase the resolution 

of the signal, E[n] is reduced if the D[n] changes 1 and 0 

consecutively more than three times. The purpose of this 

algorithm is to make E[n] change only when a large signal is 

entered, maintaining the highest resolution. Fig. 6(b) 

illustrates an example of a signal restored according to an 

input signal. When a sudden large input signal comes in, the 

step size increase, and if the restored signal has a similar 

value to the input signal, the step size decreases again to have 

a higher resolution. 

 

B. Measurements 

Fig. 7. is a measurement environment for verifying the 

performance of the designed integrated circuit. The designed 

chip was directly connected to the printed circuit board 

(PCB), and the signal generated by the signal generator 

(APX526) was configured to enter each channel through the 

chip pad. Power and clock signals are supplied through a 

field programmable gate array (FPGA), and signals from the 

chip are processed through the FPGA and MATLAB. The 

input current was 50 nA, and the 15.6, 31.25, and 62.5 kHz 

clock signals were used as the sampling frequencies and 

chopping frequencies.  

Fig. 8(a) shows the reconstructed 16-channel results 

through MATLAB when the sampling frequency and 

chopping frequency are used as 31.25 kHz. It can be seen 

that all 16 channels operate well when the input signal was a 

1 Hz sine signal of 7.24 mVpp. Fig. 8(b) represents 1 

channel’s fast Fourier transform (FFT) result and the 63.4 dB 

spurious-free dynamic range (SFDR) was calculated. The 

signal-to-noise distortion ratio (SNDR) results with various 

inputs are shown in Fig. 9. As shown in the figure, if the 

signal's amplitude goes beyond -30dBV the SNDR does not 

increase anymore. Because the auto-ranging function is  
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Fig. 7. Environmental configuration for the designed chip measurement.  

 

 
(a)

 

(b) 

Fig. 8. Recorded signal using the designed chip. (a) Reconstructed 16 

channel signals using MATLAB and (b) FFT result of the recorded signal 
 

activated to increase the size of the 1-bit quantizer, degraded 

output resolution. 

As the frequency of the input signal increases, the change 

amount per unit of time increases, and as a result, the auto-

ranging function works even on a small amplitude. Thus, the 

output signal's SNDR decrease in the high-frequency signal. 

In Fig. 9. if the signal's frequency goes over 500 Hz, the 

SNDR of the large amplitude signal is lowered as shown in 

the graph. However, when measuring a neural signal having 

less than a few μV, it operates without SNDR reduction. 

Also, if we increase the sampling frequency we can increase 

SNDR even high-frequency signals come in. 

 
Fig. 9. SNDR result according to the amplitude and frequency of the input 

signals. 

 

Fig. 10. Input referred noise according to the chopping noise. 

 

The dynamic range was measured to be 93 dB, which is 

sufficient performance in recording the neural signal and the 

stimulation artifacts together. The noise performance 

according to the chopping frequency is shown in Fig. 10. 

This result indicates input referred noise according to the 

chopping frequency when the sampling frequency is 31.2 

kHz. It can be seen that overall input referred noise decreases 

by increasing the chopping frequency. This is because the 

amount of flicker noise entering the frequency of interest 

decreases as the chopping frequency increases. To see the 

performance of the auto-ranging, a 500μVpp sine signal was 

given with a 100mVpp square signal as an input. As shown 

in Fig. 11., a waveform that gives a 200mV square signal and 

a 100μV sine signal at the same time was given as an input 

to determine whether a neural signal can be measured with a 

sudden large artifact. Without auto-ranging, the update 

speed cannot quickly follow the input signal. On the other 

hand, when using auto-ranging, the system can track a large 

signal at high speed. After following the square waveform, 

the sine input signal can be tracked at high resolution with a 

small update size. Overall tolerable artifact amplitude was 

measured as ±130 mV. 

III. CONCLUSION 

In this circuit design, a measurement system that can 

operate in a closed-loop stimulation system was 

implemented using a 65nm  CMOS process with a 2nd-

order DSM structure. The entire system consists of 16 

channels, with a total area of 1 mm2  and a power 

consumption of 49 μW. The performance of the circuit has 

a high dynamic input range of more than 93 dB and has an 

input referred noise of 0.89 μ𝑉𝑟𝑚𝑠 when chopping 
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(a) 

 
(b) 

Fig. 11. Reconstructed result in which square waveforms and sine waves are 
combined into input signals without auto-ranging and with auto-ranging. 

 

frequency is 125 kHz. Input referred noise was measured 

0.1Hz to 500Hz, which is the frequency band of the ECoG 

signal. Overall chip performance and comparison table are 

summarized in Table I. This structure is implemented to be 

used for closed-loop neural recording by having a high 

dynamic range and low input referred noise. 

 
TABLE I. Performance Comparison 
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Process 
65nm 

CMOS 
180nm 
CMOS 

40nm 
CMOS 

Supply voltage 

 (V) 
1 1 1.2 

Power/Ch  

(μW) 
3.06. 6.5 7.3 

Input referred 

noise 

(nV/√Hz) 

39.8 265.6 127 

Dynamic range 

 (dB) 
93 92.3 90 

ENOB (bits) 10.6 13.7 13.3 
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